# **Programmable Logic Devices**



- Programmable Logic Devices (PLD)
  - General purpose chip for implementing circuits
  - Can be customized using programmable switches
- Programmable devices have their functionality programmed before they are first used.
- Range in complexity from 100's to 10,000's of logic gates.
- Main types of PLDs
  - ROM
  - PLA
    - PAL Simple/Sequential Prog Logic Devices
  - CPLD (Complex Prog. Logic Devices)
  - FPGA (Field Prog Gate Array)
- Custom chips: standard cells, sea of gates

# PLD as a Black Box



# PLD's

Most of these devices are based on a two level structure (sum of products form).







- A ROM (Read Only Memory) has a fixed AND plane and a programmable OR plane
- Size of AND plane is 2<sup>n</sup> where n = number of input pins
  - Has an AND gate for every possible minterm so that all input combinations access a different AND gate
- OR plane dictates function mapped by the ROM



• P input lines: address lines

ROM

- $\circ$  2<sup>p</sup> distinct addresses = M locations
- N of bits at each location = Data
- n output lines: word (no of bits stored data)
- CS Signal Chip Select Signal
- RD Signal Read Signal

Address Lines (P) such that  $2^{P} \ge M$  (M is no of locations)



 $F(A,B,C) = \Sigma(0,3,5,6)$ 



- a M x N decoder is used to select the location
- o plus m OR gates
- can be used to implement any Boolean functions of n input variables
- a fixed AND array and a programmable OR array

#### 4x4 ROM

 4x4 ROM has 4 addresses that are decoded using 2 x 4 Decoder, 4 output lines and 4 data lines.
Interconnections are called Crosslinks, are connected using fuses. X shows ON (1) status.



• A 32x4 ROM



#### combinational logic Circuit implementation

• store the truth table in a ROM



 $F_2$ 

#### Examples 5-3

• generate the square of a 3-bit number

#### TABLE 5-5 Truth Table for Circuit of Example 5-3

|    | Inputs |    | Outputs |         |                       |    |       |       |         |
|----|--------|----|---------|---------|-----------------------|----|-------|-------|---------|
| A, | $A_1$  | Ao | $B_5$   | $B_{4}$ | <i>B</i> <sub>3</sub> | B2 | $B_1$ | $B_0$ | Decimal |
| 0  | 0      | 0  | 0       | 0       | 0                     | 0  | 0     | 0     | 0       |
| 0  | 0      | 1  | 0       | 0       | 0                     | 0  | 0     | 1     | 1       |
| 0  | 1      | 0  | 0       | 0       | 0                     | 1  | 0     | 0     | 4       |
| 0  | 1      | 1  | 0       | 0       | 1                     | 0  | 0     | 1     | 9       |
| 1  | 0      | 0  | 0       | 1       | 0                     | 0  | 0     | 0     | 16      |
| 1  | 0      | 1  | 0       | 1       | 1                     | 0  | 0     | 1     | 25      |
| 1  | L      | 0  | 1       | 0       | 0                     | 1  | 0     | 0     | 36      |
| 1  | 1      | 1  | 1       | 1       | 0                     | 0  | 0     | 1     | 49      |



| $A_2$ | $A_1$ | $A_0$ | $-F_{1}$ | $F_{2}$ | $F_3$ | $F_4$ |
|-------|-------|-------|----------|---------|-------|-------|
| 0     | 0     | 0     | 0        | 0       | 0     | 0     |
| 0     | 0     | L     | 0        | 0       | 0     | 0     |
| 0     | 1     | 0     | 0        | 0       | 0     | 1     |
| 0     | 1     | 1     | 0        | 0       |       | 0     |
| 1     | 0     | 0     | 0        | 1       | 0     | 0     |
| 1     | 0     | 1     | 0        | 1       | 1     | 0     |
| 1     | 1     | 0     | 1        | 0       | 0     | 1     |
| 1     | 1     | 1     | 1        | 1       | 0     | 0     |

(b) ROM truth table

(a) Block diagram

#### Types of ROMs

- mask programming ROM
  - IC manufacturers
  - is economical only if large quantities
- PROM: Programmable ROM
  - fuses
  - universal programmer
- EPROM: erasable PROM
  - floating gate
  - ultraviolet light erasable
- EEPROM: electrically erasable PROM

15

- longer time is needed to write
- flash ROM
- limited times of write operations





#### Gate Level Version of PLA

 $f_1 = x_1 x_2 + x_1 x_3' + x_1' x_2' x_3$  $f_2 = x_1 x_2 + x_1' x_2' x_3 + x_1 x_3$ 



#### Customary Schematic of a PLA



# Advantages of PLA:

- Both AND and OR array are programmable,
- It gives flexibility for implementation of Logic design.
- Included as a part of larger chips such as microprocessors.
- Power requirement is less than ROM.
- Cost is also less.

### **Disadvantages:**

Simplification of boolean expression is required.

# Limitations of PLAs

- PLAs come in various sizes
  - Typical size is 16 inputs, 32 product terms, 8 outputs
    - Each AND gate has large fan-in → this limits the number of inputs that can be provided in a PLA
    - 16 inputs  $\rightarrow$  3<sup>16</sup> = possible input combinations; only 32 permitted (since 32 AND gates) in a typical PLA
    - 32 AND terms permitted  $\rightarrow$  large fan-in for OR gates as well
      - This makes PLAs slower and slightly more expensive than some alternatives to be discussed shortly
    - 8 outputs  $\rightarrow$  could have shared minterms, but not required

#### Programmable Array Logic (PAL)

- (AND Array is programmable and OR array is fixed)
  - Also used to implement circuits in SOP form
  - The connections in  $\bigcirc$ the AND plane are programmable
  - The connections in  $\bigcirc$ the OR plane are NOT programmable



#### Example Schematic of a PAL

 $f_1 = x_1 x_2 x_3' + x_1' x_2 x_3$  $f_2 = x_1' x_2' + x_1 x_2 x_3$ 



AND plane

# Comparing PALs and PLAs

- PALs have the same limitations as PLAs (small number of allowed AND terms) plus they have a fixed OR plane → less flexibility than PLAs
- PALs are simpler to manufacture, cheaper, and faster (better performance)
- PALs also often have extra circuitry connected to the output of each OR gate
  - The OR gate plus this circuitry is called a *macrocell*

#### Multi-Level Design with PALs

• f = A'BC + A'B'C' + ABC' + AB'C = A'g + Ag'

where g = BC + B'C' and C = h below





- can generate any product term
- each OR has only three inputs
- Commercial PAL
  - more than 8 inputs
  - some of the output terminals are sometimes bidirectional
  - each OR gate may have 8 inputs
  - the fuse pattern may be unreadable
  - o output terminals may be latched

| An example                                    |     |
|-----------------------------------------------|-----|
| • $w = \Sigma(2, 12, 13)$                     |     |
| $x = \Sigma(7, 8, 9, 10, 11, 12, 13, 14, 15)$ | y = |
| $\Sigma(0,2,3,4,5,6,7,8,10,11,15)$            | z = |
| $\Sigma(1,2,8,12,13)$                         |     |
| $\circ$ w = ABC'+A'B'CD'                      |     |
| x = A + BCD                                   | y = |
| A'B+CD+B'D'                                   | z = |
| ABC'+A'B'CD'+AC'D'+A'B'C'D                    |     |
| =w+AC'D'+A'B'C'D                              |     |

- using the output from w, the function z is reduced to three terms
- if an input of the AND gates is not used, leave all the input fuses input intact



# **Combinational PLDs**



## Simple Programmable Logic Devices and Complex Programmable Logic Devices



- Complex Programmable Logic Devices (CPLD)
- SPLDs (PLA, PAL) are limited in size due to the small number of input and output pins and the limited number of product terms
  - Combined number of inputs + outputs < 32 or so</p>
- CPLDs contain multiple circuit blocks on a single chip
  - Each block is like a PAL: PAL-like block
  - Connections are provided between PAL-like blocks via an interconnection network that is programmable
  - Each block is connected to an I/O block as well

#### Structure of a CPLD



#### Internal Structure of a PAL-like Block

- Includes macrocells
  - Usually about 16 each
- Fixed OR planes
  - OR gates have fan-in between 5-20
- XOR gates provide negation ability
  - XOR has a control input



# More on PAL-like Blocks

- CPLD pins are provided to control XOR, MUX, and tri-state gates
- When tri-state gate is disabled, the corresponding output pin can be used as an input pin
  - The associated PAL-like block is then useless
- The AND plane and interconnection network are programmable
- Commercial CPLDs have between 2-100 PAL-like blocks

#### Example CPLD

Use a CPLD to implement the function

•  $f = x_1 x_3 x_6' + x_1 x_4 x_5 x_6' + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$ 





- SPLDs and CPLDs are relatively small and useful for simple logic devices
  - Up to about 20000 gates
- Field Programmable Gate Arrays (FPGA) can handle larger circuits
  - No AND/OR planes
  - Provide logic blocks, I/O blocks, and interconnection wires and switches
  - Logic blocks provide functionality
  - Interconnection switches allow logic blocks to be connected to each other and to the I/O pins



#### Example FPGA

• Use an FPGA with 2 input LUTS to implement the function  $f = x_1x_2 + x_2'x_3$ 



## Another Example FPGA

- Use an FPGA with 2 input LUTS to implement the function  $f = x_1x_3x_6' + x_1x_4x_5x_6' + x_2x_3x_7 + x_2x_4x_5x_7$ 
  - Fan-in of expression is too large for FPGA (this was simple to do in a CPLD)
  - Factor f to get sub-expressions with max fan-in = 2

$$f = x_1 x_6' (x_3 + x_4 x_5) + x_2 x_7 (x_3 + x_4 x_5)$$
  
=  $(x_1 x_6' + x_2 x_7) (x_3 + x_4 x_5)$ 

- Could use Shannon's expansion instead
  - Goal is to build expressions out of 2-input LUTs

# Custom Chips

- PLDs are limited by number of programmable switches
  - Consume space
  - Reduce speed
- Custom chips are created from scratch
  - Expensive → used when high speed is required, volume sales are expected, and chip size is small but with high density of gates
  - ASICs (Application Specific Integrated Circuits) are custom chips that use a <u>standard cell</u> layout to reduce design costs