Analysis and Designing of Sequential Circuit

To analyze sequential circuits

- Find Boolean expressions for the outputs of the circuit and the flip-flop inputs.
- Use these expressions to fill in the output and flip-flop input columns in the state table.
- Finally, use the characteristic equation or characteristic table of the flip-flop to fill in the next state columns.
- The result of sequential circuit analysis is a state table or a state diagram describing the circuit.

Sequential Circuit Description

Sequential Circuit Description
 Input for Next state Present state

Input Equations

$$
\begin{aligned}
& A_{\text {next }}=A_{\text {present }} X+B_{\text {present }} X \\
& B_{\text {next }}=A_{\text {present }}^{\prime} X \\
& Y=\left(A_{\text {present }}+B_{\text {present }}\right) X^{\prime}
\end{aligned}
$$

Next state in terms of input and present state

Output in terms of input and present state

State Table

Present State		Input	Next State		Output
A	B	X	A	B	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

State Diagram

Mealy and Moore Models

- Preceding Example: Output depends on present state and input. This is called the Mealy Model
- Another kind of circuit: Output only depends on present state. This is called the Moore Model

Example of Moore Model

Moore Model

Flip-flops

Mealy Model

Mealy and Moore Model State Diagrams

How to Design a Sequential Circuit

- 1. Specification
- 2. Formulation: Draw a state diagram
- 3. Assign state number for each state
- 4. Draw state table
- 5. Derive input equations
- 5. One D flip-flop for each state bit

Example

- Design a sequential circuit to recognize the input sequence 1101.
- That is, output 1 if the sequence 1101 has been read, output 0 otherwise.

Assign States

- 4 states, so we need 2 bits

Draw State Table

Present State		Input	Next State		Output
A	B	X	A	B	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

Derive Input Equations

$$
\begin{aligned}
& A_{\text {next }}=A^{\prime} B X+A B^{\prime} \\
& B_{\text {next }}=A^{\prime} B^{\prime} X+A B^{\prime} X^{\prime}+A B X \\
& Y=A B X
\end{aligned}
$$

Draw Circuit

