Sequential Circuit Design

Overview

- Sequential Circuit Design

- Specification
- Formulation
- State Assignment
- Flip-Flop Input and Output Equation
- Verification

The Design Procedure

- Specification - Description of the Problem
- Formulation - Obtain a state diagram or state table
- State Assignment - Assign binary codes to the states
- Flip-Flop Input Equation Determination
- Select flip-flop types
- Derive flip-flop equations from next state entries in the table
- Output Equation Determination
- Derive output equations from output entries in the table
- Optimization - Optimize the equations
- Technology Mapping - Use available flip-flops and gate technology
- Verification - Verify correctness of final design

Formulation: Finding a State Diagram

- A State is an abstraction of the history of the past applied inputs to the sequential circuit
- A state is used to remember something about the history of input combinations applied to the circuit
- The interpretation of past inputs is tied to the synchronous operation of the circuit
- An input value is considered only during the setup-hold time interval for an edge-triggered flip-flop.
- Examples:
- State A represents the fact that a ' 1 ' input has occurred among the past inputs.
- State B represents the fact that a ' 0 ' followed by a ' 1 ' have occurred as the most recent past two inputs.

Formulation: Finding a State Diagram

- In specifying a circuit, we use states to remember meaningful properties of past input sequences that are essential to predicting future output values
- A sequence recognizer is a sequential circuit that produces a distinct output value whenever a prescribed pattern of input symbols occur in sequence, i.e, recognizes an input sequence occurence
- We will develop a procedure specific to sequence recognizers to convert a problem statement into a state diagram
- Next, the state diagram, will be converted to a state table from which the circuit will be designed

Sequence Recognizer Procedure

- Begin in an initial state in which NONE of the initial portion of the sequence has occurred (reset state)
- Add a state that recognizes that first symbol has occurred
- Add states that recognize each successive symbol
- The final state represents the input sequence occurence
- Add state transition arcs which specify what happens when a symbol not in the proper sequence has occurred
- Add other arcs which transition to states that represent the input subsequence that has occurred
- The circuit must recognize the input sequence regardless of where it occurs within the overall sequence

Sequence Recognizer Example

- Example: Recognize the sequence 1101
- Example: the sequence 1111101 contains 1101
- Thus, the sequential machine must remember that the first two one's have occurred as it receives another symbol
- Also, the sequence 1101101 contains 1101 as both an initial subsequence and a final subsequence with some overlap, i. e., $\underline{1101101}$ or 1101101
- The 1 in the middle, 1101101, is in both subsequences
- The sequence 1101 must be recognized each time it occurs in the input sequence

Example: Recognize 1101

- Define states for the sequence to be recognized:
- Assuming it starts with first symbol
- Continues through each symbol in the sequence to be recognized
- Uses output 1 to mean the full sequence has occurred
- With output 0 otherwise
- Start in the initial state
- State ' A ' is the initial state
- Add a state ' B ' that recognizes the first ' 1 '
- State ' B ' is the state which represents the fact that the first ' 1 ' in the input subsequence has occurred. The output symbol ' 0 ' means that the full recognized sequence has not yet occurred

Example: Recognize 1101 (continued)

- After one more ' 1 ', we have:
- \mathbf{C} is the state obtained when the input sequence has two ' 1 's.

- Finally, after ' 110 ' and a ' 1 ', we have:

- Transition arcs are used to denote the output function
- Output ' 1 ' on the arc from D means the sequence is recognized
- To what state should the arc from state D go? recall 1101101

Example: Recognize 1101 (continued)

- Clearly the final ' 1 ' in the recognized sequence 1101 is a sub-sequence of 1101 . It follows a ' 0 ' which is not a sub-sequence of 1101 . Thus it should represent the same state reached from the initial state after a first ' 1 ' is observed. We obtain:

Example: Recognize 1101 (continued)

- The states have the following meanings:
- A: Start state, no sub-sequence has occurred
- B: The sub-sequence ' 1 ' has occurred
- C: The sub-sequence ' 11 ' has occurred
- D: The sub-sequence ' 110 ' has occurred
- The $1 / 1$ on the arc from D to B means that the last ' 1 ' in 1101 has occurred and thus, the output is ' 1 ',

Example: Recognize 1101 (continued)

- The other arcs are added to each state for inputs are not yet listed. Which arcs are missing?
- Answer:

- '0' arc from state A
- ' 0 ' arc from state B
- '1' arc from state C
- '0' arc from state D

Example: Recognize 1101 (continued)

- Add the arcs for missing inputs at any state to make the state diagram complete. We get:

- The ' 1 ' arc from state \mathbf{C} to itself implies that State C means two or more 1's have occurred.

Formulation: Find the State Table

- From the State Diagram, we can fill in the State Table
- There are 4 states, one input, and one output
- We will draw a table with four rows, one for each current state
- From State A, the ' 0 ' and ' 1 ' input transitions have been filled in along with the outputs

Present	Next State		Output	
State	$\mathbf{x}=\mathbf{0} \quad \mathbf{x}=1$	$\mathbf{x}=\mathbf{0} \quad \mathbf{x}=\mathbf{1}$		
A	A	B	$0 \quad 0$	
B				
C				
D				

Formulation: Find State Table

- From the state diagram, we obtain the state table

Present	Next		State	
State	Output			
$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	
A	A	B	$\mathbf{0}$	$\mathbf{0}$
B	A	C	$\mathbf{0}$	$\mathbf{0}$
C	D	C	$\mathbf{0}$	$\mathbf{0}$
D	A	B	0	1

State Assignment

- Each state must be assigned a unique code
- Minimum number of bits required for m states in the state diagram is n such that
$n \geq\left\lceil\log _{2} m\right\rceil$, where $\lceil x\rceil$ is the smallest integer $\geq x$
- There are useful state assignments that use more than the minimum number of bits
- If \boldsymbol{n} bits are used, there are $\mathbf{2}^{\boldsymbol{n}}$ - \boldsymbol{m} unused states

State Assignment - Example

Present	Next State		Output	
State	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	$\mathbf{x}=\mathbf{0} \quad \mathbf{x}=\mathbf{1}$	
A	A	B	$\mathbf{0}$	$\mathbf{0}$
B	A	C	$\mathbf{0}$	$\mathbf{0}$
C	D	C	$\mathbf{0}$	$\mathbf{0}$
D	A	B	$\mathbf{0}$	$\mathbf{1}$

- What is the minimum number of bits to code 4 states?
- Answer: 2 bits $\left(\log _{2} 4=2\right.$). Therefore, 2 flip-flops are required
- With 2 bits, we can have 4 codes: $00,01,10$, and 11
- How may assignments of $\mathbf{2}$-bit codes to the $\mathbf{4}$ states?
- Answer: $4 \times 3 \times 2 \times 1=24$ possible assignments
- Does code assignment make a difference in cost?
- Answer: yes, it affects the cost of the combinational logic

Counting Order State Assignment

- One possible assignment is Counting Order $\mathrm{A}=00, \mathrm{~B}=01, \mathrm{C}=10, \mathrm{D}=11$
- The resulting coded state table:

Present State	Next State		Output Z		
$\mathrm{Y}_{1} \mathrm{Y}_{2}$	$\mathrm{x}=0$		$\mathrm{x}=1$	$\mathrm{x}=0 \quad \mathrm{x}=1$	
$\mathrm{~A}=00$	00	01	0	0	
$\mathrm{~B}=01$	00	10	0	0	
$\mathrm{C}=10$	11	10	0	0	
$\mathrm{D}=11$	00	01	0	1	

General Structure of Sequence Detector

- To implement the 1101 sequence detector
- Choose the type of flip-flops that will be used as memory elements
- Determine and minimize the next state and output equations
- These equations are functions of input and current state
- Implement the next state and output combinational logic

Find Next State and Output K-maps

- Assume D flip-flops \& counting order assignment
- Obtain the K-maps for flip-flop inputs $\mathrm{D}_{1}, \mathrm{D}_{\mathbf{2}}$, and output Z

	Z	
$\mathbf{Y}_{1} \mathbf{Y}_{2}{ }^{\mathbf{X}}$,	1
00	0	0
01	0	0
11	0	1
10	0	0

Perform two-level optimization

Gray Code State Assignment

- Another possible assignment is Gray Code:

$$
A=00, B=01, C=11, D=10
$$

- The resulting coded state table:

Present State				
$\mathrm{Y}_{1} \mathrm{Y}_{2}$	Next State		Output Z	
$\mathrm{x}=0 \mathrm{x}=1$				

K-Maps for Gray Code State Assignment

- Assume D flip-flops and gray code assignment
- Obtain K-maps for D_{1}, D_{2}, and Z :

Perform two-level optimization

$\mathrm{D}_{1}=\mathrm{Y}_{1} \mathrm{Y}_{2}+\mathbf{X Y} \mathbf{Y}_{2}$
Gate Input Cost =9
$\mathrm{D}_{2}=\mathrm{X} \quad$ Select this state assignment to
$\mathbf{Z}=X Y_{1} \overline{\mathbf{Y}}_{2} \quad$ complete the design

Map to Technology

- Library: D-type Flip-Flops with Reset input
- Reset input is used to reset to start state: $Y_{1} Y_{2}={ }^{\prime} \mathbf{0 0}$ '

Circuit Implementation with NAND

Using SR, JK, and T Flip-Flop Types

- Characteristic table (used in analysis)
- Defines the next state of the flip-flop in terms of flipflop inputs and current state
- Characteristic equation (used also in analysis)
- Obtained from characteristic table
- Defines the next state of the flip-flop as a Boolean function of the flip-flop inputs and the current state
- Excitation table (used in design)
- Defines the flip-flop input variable values as function of the current state and next state

SR Flip-Flop

- Characteristic Table

S R	$\mathrm{Q}(\mathrm{t}+1)$	Operation	
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$?$	Undefined

- Excitation Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	$\mathrm{S} R$	Operation
0	0	0	X
0	1	1	0
No change			
1	0	0	1
Set			
1	1	X eset	0
No change			

- Characteristic Equation $\mathbf{Q}(\mathbf{t}+\mathbf{1})=\mathbf{S}+\overline{\mathbf{R}} \mathbf{Q}(\mathbf{t})$
S R = 0 (S and R cannot be 1 simultaneously)

JK Flip-Flop

- Characteristic Table

J	K	$Q(\mathrm{t}+1)$	Operation
0	0	$Q(\theta)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$\bar{Q}(\theta)$	Complement

- Excitation Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+\mathbf{1})$	J	K	Operation
0	0	0	X	No change
0	1	1	X	Set
1	0	X	1	Reset
1	1	X	0	No Change

- Characteristic Equation $\mathbf{Q}(\mathbf{t} \mathbf{+ 1})=\mathbf{J} \overline{\mathbf{Q}}(\mathbf{t})+\mathbf{K} \mathbf{Q}(\mathbf{t})$

Symbol

T Flip-Flop

- Characteristic Table

T $Q(t+1)$ Operation
$0 \quad Q(t) \quad$ No change
$1 \bar{Q}(t) \quad$ Complement

- Excitation Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	T	Operation
0	0	0	No change
0	1	1	Complement
1	0	1	Complement
1	1	0	No Change

- Characteristic Equation $\mathbf{Q}(\mathbf{t} \mathbf{1})=\mathbf{T} \oplus \mathbf{Q}(\mathbf{t})$

Symbol

Obtaining Excitation Table for Flip Flops

- Use T flip flop for \mathbf{Y}_{1} and JK flip flop for \mathbf{Y}_{2}
- Use Gray code assignment for states
- Obtain Excitation table for T and JK inputs:

Present State	Next State		T input for Y_{1}		JK input for Y_{2}		Output Z	
$\mathrm{Y}_{1} \mathrm{Y}_{2}$	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
$\mathrm{A}=00$	00	01	0	0	0 X	1 X	0	0
$\mathrm{B}=01$	00	11	0	1	X 1	X	0	0
$\mathrm{C}=1$	10	1	0	0	X	X 0	0	0
$\mathrm{D}=10$	00	01	1	1	0 X	1 X	0	1

Optimize Equations for T, J, and K

Circuit Implementation

- Reset input is used to reset $Y_{1} \mathbf{Y}_{2}$ to '00' (start state)

One-Hot Assignment

- Use one flip-flop per state: \boldsymbol{m} states $\Rightarrow \boldsymbol{m}$ flip-flops
- $\mathbf{Y}_{3} \mathbf{Y}_{2} \mathbf{Y}_{1} \mathbf{Y}_{0}=0001$ (state A), 0010 (B), 0100 (C), 1000 (D)
- Flip-flop cost is higher but combinational logic might be simpler
- Provides simplified analysis and design
- In equations, need to include only the variable that is 1 for the state, e. g., state with code 0001, is represented in equations by \mathbf{Y}_{0} instead of $\overline{\mathbf{Y}}_{3} \overline{\mathbf{Y}}_{2} \overline{\mathbf{Y}}_{1} \mathbf{Y}_{0}$ because if \mathbf{Y}_{0} is ' 1 ' then the remaining state variables will be ' 0 '

One-Hot State Assignment

- A = 0001, B = 0010, C = 0100, D = 1000
- The resulting coded state table:

Present State	Next State		Output	
$\mathrm{Y}_{3} \mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{x}=0 \quad \mathrm{x}=1$	$\mathrm{x}=0 \quad \mathrm{x}=1$		
0001	0001	0010	0	0
0010	0001	0100	0	0
0100	1000	0100	0	0
1000	0001	0010	0	1

Optimization: One Hot Assignment

- No need for K-map, flip-flop input equations can be obtained directly from the state table
- Assume D Flip-Flops
$D_{0}=\bar{X}\left(Y_{0}+Y_{1}+Y_{3}\right)$ or $\bar{X} \bar{Y}_{2}$
$D_{1}=X\left(Y_{0}+Y_{3}\right)=X \bar{Y}_{1} \bar{Y}_{2}$
$D_{2}=X\left(Y_{1}+Y_{2}\right)=X \bar{Y}_{0} \bar{Y}_{3}$
$D_{3}=\bar{X} Y_{2}$
$\mathrm{Z}=\mathrm{XY}_{3} \quad$ Gate Input Cost $=12$
- Total cost = combinational circuit cost + cost of four flip-flops

Mealy and Moore Sequential Circuits

- Two ways to design clocked sequential circuits
- Mealy and Moore type sequential circuits
- Mealy type sequential circuit
- Output is a function of current state and input

- Example: 1101 sequence detector discussed above

Moore Type Sequential Circuits

- Output depends on current state only
- Output does not depend on input
- Combinational logic is divided into two parts
- Next state logic depends on input and current state
- Output logic depends on current state only

Moore Model for Sequence 1101 Detector

- For the Moore Model, outputs depend on states
- We need to add a state E with output value ' 1 ' for the final ' 1 ' in the recognized input sequence
- This new state E, though similar to B, would generate an output of ' 1 ' and thus be different from state B
- The Moore model for a sequence recognizer usually has more states than the Mealy model

Moore State Diagram

- We mark outputs on states for Moore model
- For Mealy, outputs were marked on arcs
- Arcs now show state transitions and input only
- Add a new state E to produce the output 1

- Note that the new state \mathbf{E}
produces the same behavior as state \mathbf{B}, but gives a different output: ' 1 ' rather than ' 0 '

Moore State Table

- State and output tables are shown below
- Observe that output y does not depend on input x

Present	Next State		
State	Output		
$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	\mathbf{y}	
\mathbf{A}	\mathbf{A}	\mathbf{B}	$\mathbf{0}$
\mathbf{B}	\mathbf{A}	C	$\mathbf{0}$
\mathbf{C}	\mathbf{D}	C	$\mathbf{0}$
\mathbf{D}	\mathbf{A}	E	$\mathbf{0}$
\mathbf{E}	A	C	$\mathbf{1}$

Moore state diagram typically results in More states

State Assignment for Moore Detector

- As in the Mealy sequence detector, the Moore sequence detector follows the same procedure for state assignment and optimizing the circuit implementation
- Using one-hot assignment, 5 state variables are required

Present State	Next State		Output
$Y_{4} Y_{3} Y_{2} Y_{1} Y_{0}$	$\mathrm{x}=0$	$\mathrm{x}=1$	Z
A = 00001	00001	00010	0
B=00010	00001	00100	0
C=00100	01000	00100	0
D=01000	00001	10000	0
E=10000	00001	00100	1

Equations for Moore Sequence Detector

- Using D Flip Flops, input equations:
$D_{0}=\bar{X}\left(Y_{0}+Y_{1}+Y_{3}+Y_{4}\right)=\bar{X} \bar{Y}_{2}$
$\mathrm{D}_{1}=\mathrm{XY} \mathrm{Y}_{0}$
$D_{2}=X\left(Y_{1}+Y_{2}+Y_{4}\right)=X \bar{Y}_{0} \bar{Y}_{3}$
$D_{3}=\bar{X} Y_{2}$
$D_{4}=X_{3}$
- Output Equation Z
$Z=Y_{4}$
- Gate input cost = 11

Circuit Implementation

Verification

- Sequential circuits should be verified by showing that the circuit produces the original state diagram
- Verification can be done manually, or with the help of a simulation program
- All possible input combinations are applied at each state and the state variables and outputs are observed
- A reset input is used to reset the circuit to its initial state
- Apply a sequence of inputs to test all the state-input combinations, i.e., all transitions in the state diagram
- Observe the output and the next state that appears after each clock edge in the timing diagram

Input Test Sequence

- An input test sequence is required to verify the correct operation of a sequential circuit
- It should test each state transition of the state diagram
- Test sequences can be generated from the state diagram
- Consider the Moore sequence detector. Starting at A (after reset), we can generate an input test sequence: X = 0101110110011010

Verifying the Moore Sequence Detector

Moore versus Mealy Sequential Circuits

- Output in a Moore sequential circuit is associated with a state, while output in a Mealy circuit is associated with a transition between states
- In general, Moore state diagrams have more states than corresponding Mealy state diagrams and the Moore sequential circuit implementation might have higher cost
- Since the output in a Mealy machine is a combination of present state and input values, an unsynchronized input may result in an invalid output (drawback of Mealy)
- A Moore state diagram produces a unique output for every state irrespective of inputs. Output of a Moore machine is synchronized with the clock (better)

Designing a '111' Sequence Detector

- To illustrate the drawback of the Mealy machine, consider the design of a ' 111 ' sequence detector

Mealy State Diagram

Moore State Diagram

State Assignment and Equations

- A minimum of 2 state variables are required
- Using Gray Code state assignment and D flip flops

Mealy State Table

Present State	Next State		Output	
$\mathbf{Y}_{\mathbf{1}} \mathbf{Y}_{\mathbf{0}}$	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
$\mathbf{A = 0 0}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{B}=\mathbf{0} \mathbf{1}$	$\mathbf{0 0}$	$\mathbf{1 1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{C = 1 1}$	$\mathbf{0 0}$	$\mathbf{1 1}$	$\mathbf{0}$	$\mathbf{1}$

- $\mathrm{D}_{1}=\mathrm{X} \mathbf{Y}_{0}$
- $D_{0}=X$
- $\mathrm{Z}=\mathrm{XY} \mathrm{Y}_{1}$

Moore State Table

Present State	Next State		Output
$\mathbf{Y}_{\mathbf{1}} \mathbf{Y}_{\mathbf{0}}$	$\mathrm{x}=0$	$\mathrm{x}=1$	\mathbf{Z}
$\mathbf{A = 0 0 0}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{0}$
$\mathbf{B}=\mathbf{0} \mathbf{1}$	$\mathbf{0 0}$	$\mathbf{1 1}$	$\mathbf{0}$
$\mathbf{C = 1 1}$	$\mathbf{0 0}$	$\mathbf{1 0}$	$\mathbf{0}$
$\mathbf{D}=\mathbf{1 0}$	$\mathbf{0 0}$	$\mathbf{1 0}$	$\mathbf{1}$

- $\mathrm{D}_{1}=\mathrm{X}\left(\mathrm{Y}_{0}+\mathrm{Y}_{1}\right)$
- $\mathrm{D}_{0}=\mathrm{X} \overline{\mathrm{Y}}_{1} \quad \mathrm{Z}=\mathrm{Y}_{1} \overline{\mathrm{Y}}_{\mathbf{0}}$

Timing Diagrams

