Shift Registers

Last Mod: March 2008 © Paul R. Godin

Registers 1.1

Shift Register Applications

- Shift Registers are an important Flip-Flop configuration with a wide range of applications, including:
 - Computer and Data Communications
 - Serial and Parallel Communications
 - Multi-bit number storage
 - Sequencing
 - Basic arithmetic such as scaling (a serial shift to the left or right will change the value of a binary number a power of 2)
 - Logical operations

Parallel versus Serial

 Serial communications: provides a binary number as a sequence of binary bits, one after another, through one data line.

 Parallel communications: provides a binary number as binary bits through multiple data lines at the same time.

Shift Registers

 Shift Registers are devices that store and move data bits in serial (to the left or the right),

..or in parallel,

..or a combination of serial and parallel.

- In Shift Registers, the binary bits transfers (shifts) from the output of one flip-flop to the input of the next individual Flip-Flop at every clock edge.
- Once the binary bits are shifted in, the individual Flip-Flops will each retain a bit, and the whole configuration will retain a binary number.

Construction

- Shift registers are constructed from flip-flops due to their characteristics:
 - Edge-triggered devices
 - Output state retention
- Each Flip-Flop in a shift register can retain one binary bit.
 - For instance, if a 5-bit binary number needs to be stored and shifted, 5 flip-flops are required.
- Each binary bit transfer operation requires a clock edge.
- Asynchronous inputs are useful in resetting the whole configuration.

Shift Register Construction

 Shift registers are comprised of D Flip-Flops that share a common clock input.

Combinations of Data Transfer Methods

Registers 1.8

SISO Flip-Flop Shift Register

 a Serial In Serial Out shift register has a single input and a single output

SIPO Flip-Flop Shift Register

 a Serial In Parallel Out shift register has a single input and access to all outputs

PISO Flip-Flop Shift Register

 a Parallel In Serial Out shift register requires additional gates, and the parallel input must revert to logic low.

PIPO Flip-Flop Shift Register

 a Parallel In Parallel Out register has the simplest configuration. It represents a memory device.

Universal Shift Registers

- Universal Shift Registers can be configured to operate in a variety of modes. For instance, they can be configured to have either Serial or Parallel Input/Output.
- Internally use steering gates to determine:
 - Serial input/output direction
 - Parallel input (load)
 - Hold
- Refer to the manufacturer specification sheets for more information.

Universal Shift Registers

 Look up the 74LS194 and describe its function by looking at the schematic. Fill in the table.

In-class exercise

Application: Parallel transferring the contents of a Register to another register.

J-K Shift registers are seldom used, as two inputs (J,K) are required to load the first flip-flop (note all others receive only set or reset inputs).

- A ring counter takes the serial output of the last Flip-Flop of a shift register and provides it to the serial input of the first Flip-Flop.
- Ring Counters are also known as re-circulating shift registers.
- The display characteristics will be familiar...

Ring Counter

In Class: Build a ring counter using electronics simulation tools

Self-Starting or Load on Power-up

- There are several ways of loading values into a ring counter on power-up:
 - RC circuit
 - Logic detection (similar to truncating a counter)

Johnson Counter

 A Johnson Counter re-circulates the last flipflop Q (inverted) output back to the input of the first Flip-Flop. It doesn't require an initialization value, and will provide a predictable output state sequence.

Re-Circulating Counters

A **4-bit** Johnson counter has a **modulus** of **8**, meaning there are 8 unique output states.

State Diagram

- A State Diagram is used to describe the sequence of output states of a circuit.
- The state diagram for the previous Johnson counter looks like this:

State Recognition

 One application of registers is to recognize a specific binary number. Sequences of bits are loaded in series into a register. External detection gates will identify if the value matches a predetermined value:

What value will this circuit detect? Will this work with a Johnson counter?

23

Comparison of two values

 Values stored in shift registers can be compared by using the following circuit :

What is the output be if both binary inputs are the same?