Shift Registers

Shift Register Applications

- Shift Registers are an important Flip-Flop configuration with a wide range of applications, including:
- Computer and Data Communications
- Serial and Parallel Communications
- Multi-bit number storage
- Sequencing
- Basic arithmetic such as scaling (a serial shift to the left or right will change the value of a binary number a power of 2)
- Logical operations

Parallel versus Serial

- Serial communications: provides a binary number as a sequence of binary bits, one after another, through one data line.

$$
10110 \underset{ }{\text { Serial }} \underset{ }{\Longrightarrow} 10110
$$

- Parallel communications: provides a binary number as binary bits through multiple data lines at the same time.

Shift Registers

- Shift Registers are devices that store and move data bits in serial (to the left or the right),

- ..or in parallel,

- .. or a combination of serial and parallel.

Configuration

- In Shift Registers, the binary bits transfers (shifts) from the output of one flip-flop to the input of the next individual Flip-Flop at every clock edge.
- Once the binary bits are shifted in, the individual Flip-Flops will each retain a bit, and the whole configuration will retain a binary number.

Construction

- Shift registers are constructed from flip-flops due to their characteristics:
- Edge-triggered devices
- Output state retention
- Each Flip-Flop in a shift register can retain one binary bit.
- For instance, if a 5 -bit binary number needs to be stored and shifted, 5 flip-flops are required.
- Each binary bit transfer operation requires a clock edge.
- Asynchronous inputs are useful in resetting the whole configuration.

Shift Register Construction

- Shift registers are comprised of D Flip-Flops that share a common clock input.

Combinations of Data Transfer Methods

- SISO: Serial In, Serial Out

- SIPO: Serial In, Parallel Out $10110 \rightarrow$
- PISO: Parallel In, Serial Out
- PIPO: Parallel In, Parallel Out

$$
\begin{aligned}
& 10110 \\
& \text { } \\
& \text { whw } \\
& 10110
\end{aligned}
$$

How many clock edges are required for each operation?

SISO Flip-Flop Shift Register

- a Serial In Serial Out shift register has a single input and a single output

SIPO Flip-Flop Shift Register

- a Serial In Parallel Out shift register has a single input and access to all outputs

PISO Flip-Flop Shift Register

- a Parallel In Serial Out shift register requires additional gates, and the parallel input must revert to logic low.

PIPO Flip-Flop Shift Register

- a Parallel In Parallel Out register has the simplest configuration. It represents a memory device.

Universal Shift Registers

- Universal Shift Registers can be configured to operate in a variety of modes. For instance, they can be configured to have either Serial or Parallel Input/Output.
- Internally use steering gates to determine:
- Serial input/output direction
- Parallel input (load)
- Hold
- Refer to the manufacturer specification sheets for more information.

Universal Shift Registers

- Look up the 74LS194 and describe its function by looking at the schematic. Fill in the table.

S0	S1	Mode
0	0	
0	1	
1	0	
1	1	

In-class exercise

Application: Parallel transferring the contents of a Register to another register.

Describe where this circuit combination may be used.

JK Shift Registers

J-K Shift registers are seldom used, as two inputs (J,K) are required to load the first flip-flop (note all others receive only set or reset inputs).

Ring Counter

- A ring counter takes the serial output of the last Flip-Flop of a shift register and provides it to the serial input of the first Flip-Flop.
- Ring Counters are also known as re-circulating shift registers.
- The display characteristics will be familiar...

Ring Counter

In Class: Build a ring counter using electronics simulation tools

Self-Starting or Load on Power-up

- There are several ways of loading values into a ring counter on power-up:
- RC circuit
- Logic detection (similar to truncating a counter)

Johnson Counter

- A Johnson Counter re-circulates the last flipflop Q (inverted) output back to the input of the first Flip-Flop. It doesn't require an initialization value, and will provide a predictable output state sequence.

Re-Circulating Counters

A 4-bit Johnson counter has a modulus of 8, meaning there are 8 unique output states.

State Diagram

- A State Diagram is used to describe the sequence of output states of a circuit.
- The state diagram for the previous Johnson counter looks like this:

State Recognition

- One application of registers is to recognize a specific binary number. Sequences of bits are loaded in series into a register. External detection gates will identify if the value matches a predetermined value:

What value will this circuit detect?
Will this work with a Johnson counter?

Comparison of two values

- Values stored in shift registers can be compared by using the following circuit :

What is the output be if both binary inputs are the same?

