Sequential Logic Latches \& Flip-flops

- Introduction
- Memory Elements
- Pulse-Triggered Latch
* S-R Latch
* Gated S-R Latch
* Gated D Latch
- Edge-Triggered Flip-flops
* S-R Flip-flop
* D Flip-flop
* J-K Flip-flop
* T Flip-flop
- Asynchronous Inputs

Introduction

- A sequential circuit consists of a feedback path, and employs some memory elements.

Sequential circuit $=$ Combinational logic + Memory Elements

Introduction

- There are two types of sequential circuits:
* synchronous: outputs change only at specific time
* asynchronous: outputs change at any time
- Multivibrator: a class of sequential circuits. They can be:
* bistable (2 stable states)
* monostable or one-shot (1 stable state)
* astable (no stable state)
- Bistable logic devices: latches and flip-flops.
- Latches and flip-flops differ in the method used for changing their state.

Memory Elements

- Memory element: a device which can remember value indefinitely, or change value on command from its inputs.

- Characteristic table:

Command (at time t)	$Q(t)$	$Q(t+1)$
Set	X	1
Reset	$Q(t)$: current state	
$Q(t+1)$ or Q^{+}: next state		
Memorise $/$	0	0
No Change	1	1

Memory Elements

- Memory element with clock. Flip-flops are memory elements that change state on clock signals.

- Clock is usually a square wave.

$\boxed{\nabla}$
\triangle
\triangle
∇
∇

Memory Elements

- Two types of triggering/activation:
* pulse-triggered
* edge-triggered
- Pulse-triggered
* latches
* $\mathrm{ON}=1, \mathrm{OFF}=0$
- Edge-triggered
* flip-flops
* positive edge-triggered ($\mathrm{ON}=$ from 0 to 1 ; $\mathrm{OFF}=$ other time)
* negative edge-triggered (ON = from 1 to $0 ; \mathrm{OFF}=$ other time)

S-R Latch

- Complementary outputs: Q and Q^{\prime}.
- When Q is HIGH, the latch is in SET state.
- When Q is LOW, the latch is in RESET state.
- For active-HIGH input S-R latch (also known as NOR gate latch),
$R=\mathrm{HIGH}$ (and $S=\mathrm{LOW}) \Rightarrow$ RESET state $S=\mathrm{HIGH}$ (and $R=$ LOW) \Rightarrow SET state both inputs LOW \Rightarrow no change both inputs HIGH $\Rightarrow Q$ and Q^{\prime} both LOW (invalid)!

S-R Latch

- For active-LOW input S-R latch (also known as NAND gate latch),
$R^{\prime}=$ LOW (and $\left.S^{\prime}=\mathrm{HIGH}\right) \Rightarrow$ RESET state
$S^{\prime}=$ LOW (and $\left.R^{\prime}=\mathrm{HIGH}\right) \Rightarrow$ SET state
both inputs HIGH \Rightarrow no change
both inputs LOW $\Rightarrow Q$ and Q^{\prime} both HIGH (invalid)!
- Drawback of S-R latch: invalid condition exists and must be avoided.

S-R Latch

- Characteristics table for active-high input S-R latch:

S	R	Q	Q^{\prime}	
0	0	NC	NC	No change. Latch remained in present state.
1	0	1	0	Latch SET.
0	1	0	1	Latch RESET.
1	1	0	0	Invalid condition.

- Characteristics table for active-low input S'-R' latch:

S^{\prime}	R^{\prime}	Q	Q^{\prime}	
1	1	NC	NC	No change. Latch remained in present state.
0	1	1	0	Latch SET.
1	0	0	1	Latch RESET.
0	0	1	1	Invalid condition.

S-R Latch

- Active-HIGH input S-R latch

- Active-LOW input S-R latch

Gated S-R Latch

- S-R latch + enable input (EN) and 2 NAND gates \rightarrow gated S-R latch.

Gated S-R Latch

- Outputs change (if necessary) only when EN is HIGH.
- Under what condition does the invalid state occur?
- Characteristic table:

$E N=1$			
$Q(t)$	S	R	$Q(t+1)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	indeterminate

S	R	$Q(t+1)$	
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
$\mathbf{1}$	$\mathbf{1}$	indeterminate	
$Q(t+1)=S+R^{\prime} . Q$			
	$S . R=0$		

Gated D Latch

- Make R input equal to $S^{\prime} \rightarrow$ gated D latch.
- D latch eliminates the undesirable condition of invalid state in the $S-R$ latch.

Gated D Latch

- When EN is HIGH,
* $D=\mathrm{HIGH} \rightarrow$ latch is SET
* $D=$ LOW \rightarrow latch is RESET
- Hence when EN is HIGH, Q 'follows' the D (data) input.
- Characteristic table:

$E N$	D	$Q(t+1)$	
1	0	0	Reset
1	1	1	Set
0	X	$Q(t)$	No change

When $E N=1, Q(t+1)=D$

Latch Circuits: Not Suitable

- Latch circuits are not suitable in synchronous logic circuits.
- When the enable signal is active, the excitation inputs are gated directly to the output Q. Thus, any change in the excitation input immediately causes a change in the latch output.
- The problem is solved by using a special timing control signal called a clock to restrict the times at which the states of the memory elements may change.
- This leads us to the edge-triggered memory elements called flip-flops.

Edge-Triggered Flip-flops

- Flip-flops: synchronous bistable devices
- Output changes state at a specified point on a triggering input called the clock.
- Change state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock signal.

Clock signal

Edge-Triggered Flip-flops

- S-R, D and J-K edge-triggered flip-flops. Note the ">" symbol at the clock input.

Positive edge-triggered flip-flops

Negative edge-triggered flip-flops

S-R Flip-flop

- S-R flip-flop: on the triggering edge of the clock pulse,
* $S=$ HIGH (and $R=$ LOW) \Rightarrow SET state
* $R=\mathrm{HIGH}$ (and $S=L O W$) \Rightarrow RESET state
* both inputs LOW \Rightarrow no change
* both inputs HIGH \Rightarrow invalid
- Characteristic table of positive edge-triggered S-R flip-flop:

S	R	$C L K$	$Q(t+1)$	Comments
0	0	X	$Q(t)$	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	$?$	Invalid
$=$ irrelevant ("don't care")				
$\uparrow=$	clock transition LOW to HIGH			

S-R Flip-flop

- It comprises 3 parts:
* a basic NAND latch
* a pulse-steering circuit
* a pulse transition detector (or edge detector) circuit
- The pulse transition detector detects a rising (or falling) edge and produces a very short-duration spike.

S-R Flip-flop

The pulse transition detector.

Positive-going transition (rising edge)

Negative-going transition (falling edge)

D Flip-flop

- D flip-flop: single input D (data)
* D=HIGH \Rightarrow SET state
* $D=$ LOW \Rightarrow RESET state
- Q follows D at the clock edge.
- Convert S-R flip-flop into a D flip-flop: add an inverter.

D	$C L K$	$Q(t+1)$	Comments	
$\mathbf{1}$	\uparrow	1	Set	
0	\uparrow	0	Reset	
$\uparrow=$ clock transition LOW to HIGH				

A positive edge-triggered D flipflop formed with an S-R flip-flop.

D Flip-flop

- Application: Parallel data transfer. To transfer logic-circuit outputs X, Y, Z to flip-flops Q_{1}, Q_{2} and Q_{3} for storage.

* After occurrence of negative-going transition

J-K Flip-flop

- J-K flip-flop: Q and Q' are fed back to the pulsesteering NAND gates.
- No invalid state.
- Include a toggle state.
* $J=$ HIGH (and $K=$ LOW) \Rightarrow SET state
* $K=H I G H$ (and $J=L O W$) \Rightarrow RESET state
* both inputs LOW \Rightarrow no change
* both inputs HIGH \Rightarrow toggle

J-K Flip-flop

- J-K flip-flop.

- Characteristic table.

J	K	$C L K$	$Q(t+1)$	Comments
0	0	\uparrow	$Q(t)$	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	$Q(t)^{\prime}$	Toggle
	$Q(t+1)=J . Q^{\prime}+K^{\prime} . Q$			

Q	J	K	$Q(t+1)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

T Flip-flop

- T flip-flop: single-input version of the J-K flip flop, formed by tying both inputs together.

- Characteristic table.

T	$C L K$	$Q(t+1)$	Comments
0	\uparrow	$Q(t)$	No change
1	\uparrow	$Q(t)^{\prime}$	Toggle

$$
Q(t+1)=T \cdot Q^{\prime}+T^{\prime} \cdot Q
$$

Q	T	$Q(t+1)$
0	0	0
0	1	1
1	0	1
1	1	0

T Flip-flop

- Application: Frequency division.

Divide clock frequency by 2.

Divide clock frequency by 4.

- Application: Counter (to be covered in Lecture 13.)

Asynchronous Inputs

- S-R, D and J-K inputs are synchronous inputs, as data on these inputs are transferred to the flip-flop's output only on the triggered edge of the clock pulse.
- Asynchronous inputs affect the state of the flip-flop independent of the clock; example: preset (PRE) and clear (CLR) [or direct set (SD) and direct reset (RD)]
- When $P R E=H I G H, Q$ is immediately set to HIGH.
- When CLR=HIGH, Q is immediately cleared to LOW.
- Flip-flop in normal operation mode when both PRE and $C L R$ are LOW.

Asynchronous Inputs

- A J-K flip-flop with active-LOW preset and clear inputs.

