Lecture 16

Multiplexer/De-multiplexer

Mux/Demux Vocabulary

MULTIPLEXER (aka DATA SELECTOR)- circuit that can select one of a number of inputs and pass the logic level of that input to the output.

DEMULTIPLEXER (aka DATA DISTRIBUTOR)- circuit that depending on the status of its select inputs will channel its data input to one of several outputs.

SELECT INPUTS (aka ADDRESS LINES)- used by the mux to determine which data inputs will be switched to the output.
if 2^{N} inputlines $=N$ select lines

Example of a Combinatorial Circuit:

A Multiplexer (MUX)
Consider an integer ' m ', which is
constrained by the following relation:

$$
\mathbf{m}=\mathbf{2}^{\mathbf{n}}, \quad \text { where } \mathrm{m} \text { and } \mathrm{n} \text { are both }
$$

integers.

- A m-to-1 Multiplexer has
- m Inputs: $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \ldots \ldots \mathrm{I}_{(\mathrm{m}-1)}$
- one Output: Y
- n Control inputs: $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots \ldots . . \mathrm{S}_{(\mathrm{n}-1)}$
- One (or more) Enable input(s)
such that Y may be equal to one of the inputs, depending upon the control inputs.

BASIC TWO-INPUT MULTIPLEXER

Example: A 4-to-1 Multiplexer

A 4-to-1 Multiplexer:

FOUR-INPUT MULTIPLEXER

MULTIPLEXER LOGIC DIAGRAM

-Takes one of many inputs and funnels it to an output Z .
-Take the selector lines convert to a decimal number and this is the input funneled to the output.
-Strobe is active low enable

S2	S1	S0	E	Z
0	0	0	0	I0
0	0	1	0	I1
0	1	0	0	I2
0	1	1	0	I3
1	0	0	0	I4
1	0	1	0	I5
1	1	0	0	I6
1	1	1	0	I7

SELECT LINES

MULTIPLEXER APPLICATIONS

-DATA ROUTING
-PARALLEL-TO-SERIAL CONVERSION
-OPERATION SEQUENCING
-IMPLEMENT LOGIC FUNCTION OF A TRUTH TABLE

LOGIC FUNCTION GENERATION

\mathbf{C}	\mathbf{B}		\mathbf{A}
\mathbf{Z}			
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Assignment -16

FILL IN THE TABLE

\mathbf{A}	\mathbf{B}		
\mathbf{C}	\mathbf{F}		
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

FILL IN THE TABLE

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

FILL IN THE TABLE

\mathbf{A}	\mathbf{B}		\mathbf{C}
\mathbf{Y}			
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

FILL IN THE TABLE

\mathbf{A}	\mathbf{B}		\mathbf{C}
\mathbf{y}	\mathbf{Y}		
0	0	0	L
0	0	1	M
0	1	0	N
0	1	1	O
1	0	0	P
1	0	1	Q
1	1	0	P
1	1	1	Q

WRITE A BOOLEAN EXPRESSION FOR THE CIRCUIT

WRITE A BOOLEAN EXPRESSION FOR THE CIRCUIT

Implementing Digital Functions : by using a Multiplexer

Implementation of $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(\mathrm{m}(1,3,5,7,8,10,12,13,14), \mathrm{d}(4,6,15))$
By using a 16-to-1 multiplexer:

NOTE: 4,6 and 15 MAY BE CONNECTED to either 0 or 1

