Lecture 13

Magnitude Comparator

Magnitude Comparator

- It is a combinational circuit that compares two numbers and determines their relative magnitude
- The output of comparator is usually 3 binary variables indicating: $\quad A>B$

$$
\begin{aligned}
& A=B \\
& A<B
\end{aligned}
$$

- For example to design a comparator for 2 bit binary numbers $A(A 1 A 0)$ and $B(B 1 B 0)$ we do the following steps:

Comparators

- For a 2-bit comparator we have four inputs A1A0 and B1B0 and three output E (is 1 if two numbers are equal), G (is 1 when $A>B$) and L (is 1 when $A<B$) If we use truth table and KMAP the result is
- $E=A^{\prime} 1 A^{\prime} 0 B^{\prime} 1 B^{\prime} 0+A^{\prime} 1 A 0 B^{\prime} 1 B 0+A 1 A 0 B 1 B 0+A 1 A^{\prime} 0 B 1 B^{\prime} 0$ or $E=((A 0 \oplus B 0)+(A 1 \oplus B 1))^{\prime}$ (see next slide)
- $G=A 1 B^{\prime} 1+A 0 B^{\prime} 1 B^{\prime} 0+A 1 A 0 B^{\prime} 0$
- $L=A^{\prime} 1 B 1+A^{\prime} 1 A^{\prime} 0 B 0+A^{\prime} 0 B 1 B 0$

Truth Table

A0	A1	B0	B1	E	L	G
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1

Magnitude Comparator

- From the truth table:
$\mathrm{E}=(0,5,10,15)$
$=A 1^{\prime} A 0^{\prime} B 1^{\prime} B 0^{\prime}+A 1^{\prime} A 0 B 1^{\prime} B 0+A 1 A 0^{\prime} B 1 B 0^{\prime}+A 1 A 0 B 1 B 0$

Magnitude Comparator

- $\mathrm{A}>\mathrm{B}$ means A 1 B 1 Y 1

if $A 1=B 1(X 1=1)$ then $A 0$ should be 1 and $B 0$ should be 0 AO BO YO

0	0	1
0	1	0
1	0	0
1	1	0

For $\mathrm{A}>\mathrm{B}: \mathrm{A} 1>\mathrm{B} 1$ or $\mathrm{A} 1=\mathrm{B} 1$ and $\mathrm{A} 0>\mathrm{B} 0$
It means $Y=A 1 B^{\prime} 1+X 1 A 0 B^{\prime} 0$ should be 1 for $A>B$

Magnitude Comparator

- For $\mathrm{B}>\mathrm{A}$ B1 $>\mathrm{A} 1$

```
        or
    A1=B1 and B0> A0
z= A'1B1 + X1A'0B0
```

- The procedure for binary numbers with more than 2 bits can also be found in the similar way. For example next slide shows the 4-bit magnitude comparator, in which
$(A=B)=x 3 \times 2 \times 1 \times 0$
$(A>B)=A 3 B^{\prime} 3+x 3 A 2 B^{\prime} 2+x 3 x 2 A 1 B^{\prime} 1+x 3 \times 2 \times 1 A 0 B^{\prime} 0$
$(A<B)=A^{\prime} 3 B 3+x 3 A^{\prime} 2 B 2+x 3 \times 2 A^{\prime} 1 B 1+x 3 \times 2 \times 1 A^{\prime} 0 B 0$

Fig. 4-17 4-Bit Magnitude Comparator

Design example: two-bit
 comparator

we'll need a 4-variable Karnaugh map for each of the 3 output functions

Design example: two-bit comparator (cont'd)

K-map for LT

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

K-map for EQ

K-map for GT
$L T=A^{\prime} B^{\prime} D+A^{\prime} C+B^{\prime} C D$
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime}=(A \times n o r C) \cdot(B \times n o r D)$
$G T=B C^{\prime} D^{\prime}+A C^{\prime}+A B D^{\prime}$

Canonical PofS vs minimal?
LT and GT are similar (flip A/C and B/D)

Design example: two-bit comparator (cont'd)

two alternative implementations of EQ with and without XOR

XNOR is implemented with at least 3 simple gates

