
Lecture 8

The Karnaugh Map or K-map

Minimization of Boolean expressions

 The minimization will result in reduction of the number of
gates (resulting from less number of terms) and the
number of inputs per gate (resulting from less number of
variables per term)

 The minimization will reduce cost, efficiency and power
consumption.

 y(x+x`)=y.1=y

 y+xx`=y+0=y

 (x`y+xy`)=xy

 (x`y`+xy)=(xy)`

Minimum SOP and POS

 The minimum sum of products (MSOP) of a
function, f, is a SOP representation of f
that contains the fewest number of product
terms and fewest number of literals of any
SOP representation of f.

Minimum SOP and POS

 f= (xyz +x`yz+ xy`z+ …..)

Is called sum of products.

The + is sum operator which is an OR gate.

The product such as xy is an AND gate for
the two inputs x and y.

Example

 Minimize the following Boolean function
using sum of products (SOP):

 f(a,b,c,d) = m(3,7,11,12,13,14,15)

 abcd

3 0011

7 0111

11 1011

12 1100

13 1101

14 1110

15 1111

a`b`cd

a`bcd

ab`cd

abc`d`

abc`d

abcd`

abcd

Example

f(a,b,c,d) = m(3,7,11,12,13,14,15)
=a`b`cd + a`bcd + ab`cd + abc`d`+ abc`d + abcd` +

abcd
=cd(a`b` + a`b + ab`) + ab(c`d` + c`d + cd` + cd)
=cd(a`[b` + b] + ab`) + ab(c`[d` + d] + c[d` + d])
=cd(a`[1] + ab`) + ab(c`[1] + c[1])
=ab+ab`cd + a`cd
=ab+cd(ab` + a`)
=ab+ cd(a + a`)(a`+b`)
= ab + a`cd + b`cd
 = ab +cd(a` + b`)

Minimum product of sums (MPOS)

 The minimum product of sums (MPOS) of a
function, f, is a POS representation of f that
contains the fewest number of sum terms
and the fewest number of literals of any POS
representation of f.

 The zeros are considered exactly the same
as ones in the case of sum of product (SOP)

Example

 f(a,b,c,d) = M(0,1,2,4,5,6,8,9,10)

=m(3,7,11,12,13,14,15)

=[(a+b+c+d)(a+b+c+d`)(a+b`+c`+d`)

(a`+b+c`+d`)(a`+b`+c+ d)(a`+b`+c+
d`) (a`+b`+c`+d)(a`+b`+c`+d`)]

The Karnaugh Map

 Feel a little difficult using Boolean
algebra laws, rules, and theorems to
simplify logic?

 A K-map provides a systematic method
for simplifying Boolean expressions and,
if properly used, will produce the
simplest SOP or POS expression
possible, known as the minimum
expression.

What is K-Map
 It’s similar to truth table; instead of being

organized (i/p and o/p) into columns and rows,
the K-map is an array of cells in which each cell
represents a binary value of the input variables.

 The cells are arranged in a way so that
simplification of a given expression is simply a
matter of properly grouping the cells.

 K-maps can be used for expressions with 2, 3, 4,
and 5 variables.

 3 and 4 variables will be discussed to illustrate the
principles.

The 3 Variable K-Map
 There are 8 cells as shown:

C

AB
0 1

00

01

11

10

CBA CBA

CBA BCA

CAB ABC

CBA CBA

The 4-Variable K-Map

CD

AB
00 01 11 10

00

01

11

10 DCBA

DCAB

DCBA

DCBA

DCBA

DCAB

DCBA

DCBA

CDBA

ABCD

BCDA

CDBA

DCBA

DABC

DBCA

DCBA

 CD

AB
00 01 11 10

00

01

11

10

Cell Adjacency

K-Map SOP Minimization

 The K-Map is used for simplifying
Boolean expressions to their minimal
form.

 A minimized SOP expression contains
the fewest possible terms with fewest
possible variables per term.

 Generally, a minimum SOP expression
can be implemented with fewer logic
gates than a standard expression.

Mapping a Standard SOP
Expression

 For an SOP
expression in
standard form:
 A 1 is placed on the K-

map for each product
term in the expression.

 Each 1 is placed in a
cell corresponding to
the value of a product
term.

 Example: for the
product term , a
1 goes in the 101 cell
on a 3-variable map.

C

AB
0 1

00

01

11

10

CBA CBA

CBA BCA

CAB ABC

CBA CBA

CBA

1

C

AB
0 1

00

01

11

10

Mapping a Standard SOP
Expression (full example)

The expression:

CBACABCBACBA

000 001 110 100

1 1

1

1

DCBADCBADCABABCDDCABDCBACDBA

CBACBABCA

ABCCABCBACBA

Practice:

Mapping a Nonstandard SOP
Expression

 A Boolean expression must be in
standard form before you use a K-map.

 If one is not in standard form, it must be
converted.

 You may use the procedure mentioned
earlier or use numerical expansion.

Mapping a Nonstandard SOP
Expression

 Numerical Expansion of a Nonstandard product
term

 Assume that one of the product terms in a certain 3-
variable SOP expression is .

 It can be expanded numerically to standard form as
follows:

 Step 1: Write the binary value of the two variables and
attach a 0 for the missing variable : 100.

 Step 2: Write the binary value of the two variables and
attach a 1 for the missing variable : 100.

 The two resulting binary numbers are the values of
the standard SOP terms and .

 If the assumption that one of the product term
in a 3-variable expression is B. How can we do

C

BA

C

CBA CBA

Mapping a Nonstandard SOP
Expression

 Map the following SOP expressions on K-maps:

DBCADACDCA

CDBADCBADCBACABBACB

CABC

CABBAA

K-Map Simplification of SOP
Expressions

 After an SOP expression has been
mapped, we can do the process of
minimization:

 Grouping the 1s

 Determining the minimum SOP expression
from the map

Grouping the 1s

 You can group 1s on the K-map
according to the following rules by
enclosing those adjacent cells
containing 1s.

 The goal is to maximize the size of
the groups and to minimize the
number of groups.

Grouping the 1s (rules)
1. A group must contain either 1,2,4,8,or 16 cells

(depending on number of variables in the
expression)

2. Each cell in a group must be adjacent to one or
more cells in that same group, but all cells in the
group do not have to be adjacent to each other.

3. Always include the largest possible number of 1s
in a group in accordance with rule 1.

4. Each 1 on the map must be included in at least
one group. The 1s already in a group can be
included in another group as long as the
overlapping groups include noncommon 1s.

Grouping the 1s (example)

C

AB
0 1

00 1

01 1

11 1 1

10

C

AB
0 1

00 1 1

01 1

11 1

10 1 1

Grouping the 1s (example)
CD

AB 00 01 11 10

00 1 1

01 1 1 1 1

11

10 1 1

CD

AB 00 01 11 10

00 1 1

01 1 1 1

11 1 1 1

10 1 1 1

Determining the Minimum SOP
Expression from the Map

 The following rules are applied to find the
minimum product terms and the minimum
SOP expression:

1. Group the cells that have 1s. Each group of cell
containing 1s creates one product term
composed of all variables that occur in only one
form (either complemented or complemented)
within the group. Variables that occur both
complemented and uncomplemented within the
group are eliminated called contradictory
variables.

Determining the Minimum SOP
Expression from the Map

2. Determine the minimum product term for
each group.
 For a 3-variable map:

1. A 1-cell group yields a 3-variable product term

2. A 2-cell group yields a 2-variable product term

3. A 4-cell group yields a 1-variable product term

4. An 8-cell group yields a value of 1 for the expression.

 For a 4-variable map:
1. A 1-cell group yields a 4-variable product term

2. A 2-cell group yields a 3-variable product term

3. A 4-cell group yields a 2-variable product term

4. An 8-cell group yields a a 1-variable product term

5. A 16-cell group yields a value of 1 for the expression.

Determining the Minimum SOP
Expression from the Map

3. When all the minimum product terms are
derived from the K-map, they are summed
to form the minimum SOP expression.

Determining the Minimum SOP
Expression from the Map (example)

CD

AB
00 01 11 10

00 1 1

01 1 1 1 1

11 1 1 1 1

10 1

B

CA

DCA

DCACAB

Determining the Minimum SOP
Expression from the Map
(exercises)

CBABCAB

C

AB
0 1

00 1

01 1

11 1 1

10

C

AB
0 1

00 1 1

01 1

11 1

10 1 1

ACCAB

Determining the Minimum SOP
Expression from the Map
(exercises)

DBACABA CBCBAD

CD

AB 00 01 11 10

00 1 1

01 1 1 1 1

11

10 1 1

CD

AB 00 01 11 10

00 1 1

01 1 1 1

11 1 1 1

10 1 1 1

Practicing K-Map (SOP)

DCBADABCDBCADCBA

CDBACDBADCABDCBADCB

CBACBACBABCACBA

CAB

CBD

Mapping Directly from a Truth
Table
I/P O/P

A B C X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

C

AB
0 1

00

01

11

10

1

1

1

1

“Don’t Care” Conditions

 Sometimes a situation arises in which some
input variable combinations are not allowed,
i.e. BCD code:

 There are six invalid combinations: 1010, 1011,
1100, 1101, 1110, and 1111.

 Since these unallowed states will never occur
in an application involving the BCD code

they can be treated as “don’t care” terms
with respect to their effect on the output.

 The “don’t care” terms can be used to
advantage on the K-map (how? see the next
slide).

“Don’t Care” Conditions
INPUTS O/P

A B C D Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

CD

AB
00 01 11 10

00

01 1

11 x x x x

10 1 1 x x

BCDACBAY
Without “don’t care”

BCDAY
With “don’t care”

K-Map POS Minimization

 The approaches are much the same (as
SOP) except that with POS expression,
0s representing the standard sum terms
are placed on the K-map instead of 1s.

C

AB
0 1

00

01

11

10

Mapping a Standard POS
Expression (full example)

The expression:

))()()((CBACBACBACBA

000 010 110 101

0

0

0

0

K-map Simplification of POS
Expression

))()()()((CBACBACBACBACBA

C

AB
0 1

00

01

11

10 BA

0 0

0 0

0
AC

CB

A

1

1 1

)(CBA

ACBA

Karnaugh Maps (K-maps)

 Karnaugh maps -- A tool for
representing Boolean functions of up to
six variables.

 K-maps are tables of rows and columns
with entries represent 1`s or 0`s of
SOP and POS representations.

Karnaugh Maps (K-maps)

 An n-variable K-map has 2n cells with each
cell corresponding to an n-variable truth table
value.

 K-map cells are labeled with the
corresponding truth-table row.

 K-map cells are arranged such that adjacent
cells correspond to truth rows that differ in
only one bit position (logical adjacency).

Karnaugh Maps (K-maps)

 If mi is a minterm of f, then place a 1 in
cell i of the K-map.

 If Mi is a maxterm of f, then place a 0 in
cell i.

 If di is a don’t care of f, then place a d
or x in cell i.

Examples

 Two variable K-map
f(A,B)=m(0,1,3)=A`B`+A`B+AB

1 0

1 1

A 0 1 B
 0

 1

Three variable map

 f(A,B,C) =
m(0,3,5)=
A`B`C`+A`BC+AB`
C

1

1
A`BC

1
AB`C

A`B`

0 0

A`B

0 1

A B

1 1

A B`

1 0

C`

0

C

1

A`B`C`

Maxterm example

 f(A,B,C) = M(1,2,4,6,7)

=(A+B+C`)(A+B`+C)(A`+B+C))(A`+B`+C) (A`+B`+C`)

Note that the complements are (0,3,5) which are the minterms
of the previous example

 0 0 0

0 0

A`B` A`B AB AB`

C`

C

(A+B) (A+B`) (A`+B`) (A`+B)

C

C`

Four variable example
(a) Minterm form. (b) Maxterm form.

f(a,b,Q,G) = m(0,3,5,7,10,11,12,13,14,15) = M(1,2,4,6,8,9)

Simplification of Boolean Functions
Using K-maps

 K-map cells that are physically adjacent are also
logically adjacent. Also, cells on an edge of a K-map
are logically adjacent to cells on the opposite edge of
the map.

 If two logically adjacent cells both contain logical 1s,
the two cells can be combined to eliminate the
variable that has value 1 in one cell’s label and value
0 in the other.

Simplification of Boolean Functions
Using K-maps

 This is equivalent to the algebraic
operation, aP + a P =P where P is a
product term not containing a or a.

 A group of cells can be combined only if
all cells in the group have the same
value for some set of variables.

Simplification Guidelines for K-maps

 Always combine as many cells in a group as
possible. This will result in the fewest number of
literals in the term that represents the group.

 Make as few groupings as possible to cover all
minterms. This will result in the fewest product
terms.

 Always begin with the largest group, which
means if you can find eight members group is
better than two four groups and one four group
is better than pair of two-group.

 Example
Simplify f= A`BC`+ A B C`+ A B C using;

(a) Sum of minterms. (b) Maxterms.

C

AB

00 01 11 10

0 2 6 4

1 3 7 5

0

1

B

0

0C

A

C

AB

00 01 11 10

0 2 6 4

1 3 7 5

0

1C

A

B

(b) (c)

Universal set

BC

A

B AB

AB

C

BC

1 1

1 0

0

(a)

0

a- f(A,B,C) = AB + BC b- f(A,B,C) = B(A + C)

F`= B`+ A`C F = B(A+C`)

 Each cell of an n-variable K-map has n logically
adjacent cells.

Example Simplify

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

1

A

C

1 1

(a) (b)

1

1

1

1 1

1 1

1 1

1 1

1 1 1

1

1 1

11 1

1

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

1

A

C

1 1

(c) (d)

1

1

1

1 1

1 1

1 1

1 1

1 1 1

1

1 1

11 1

1

f(A,B,C,D) = m(2,3,4,5,7,8,10,13,15)

 Example Multiple selections

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

1

A

C

1 1

(a) (b)

1

1

1

1 1

1 1

1 1

1 1

1 1 1

1

1 1

11 1

1

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

1 1

1 1

1 1

1 1

1

(c)

f(A,B,C,D) = m(2,3,4,5,7,8,10,13,15)

 c produces less terms than a

 Example Redundant selections

 f(A,B,C,D) = m(0,5,7,8,10,12,14,15)

1

1 1

1

1 11

1

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

(a) (b)

1

1 1

1

1

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

1

(c) (d)

1

1

1

1 1

1

1

1 11

1

1

1 1

1

1 11

1

1

1 1

1

1 11

1

Example

Example

Example

f(A,B,C,D) = m(1,2,4,6,9)

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

1

1 1

1 1

A

C

Step 2

Step 1

Step 3

Different styles of drawing maps
 f(A,B,C) = m(1,2,3,6) = AC + BC

1

C

AB

00 01 11 10

0 2 6 4

3 7 5

0

1

B

1 1

1 1

A

C

BC

A 00 01 11 10

0

1

1 1 1

1

1

1 1

1

C

AB

0 1

00

01

11

10

•Minterms that may produce either 0 or 1 for the function.

•They are marked with an ´ in the K-map.

•This happens, for example, when we don’t input certain

minterms to the Boolean function.

•These don’t-care conditions can be used to provide further

simplification of the algebraic expression.

(Example) F = A`B`C`+A`BC` + ABC`

 d=A`B`C +A`BC + AB`C

F = A` + BC`

Don’t-care condition

Five variable K-maps
Use Two Four-variable K-Maps

bc
de 00 01 11 10

00

01

11

10

bc
de 00 01 11 10

00

01

11

10

a`=0 map a=1 map

1

1

1

1

1

1

1

1

1 1

f(a,b,c,d,e) = m(0,5,7,13,15,16,21,23,29,31)

a` f

0 1

1

2

3

4

5 1

6

7 1

8

9

10

11

12

13 1

14

15 1

a f

16 1

17

18

19

20

21 1

22

23 1

24

25

26

27

28

29 1

30

31 1

bc
de 00 01 11 10

00

01

11

10

bc
de 00 01 11 10

00

01

11

10

a`=0 map a=1 map

1

1

1

1

1

1

1

1

1 1

F1=a`b`c`d`e` + a`ce, F2=ace + ab`c`d`e`

f(a,b,c,d,e) = f1+f2

F=(a+a`)ce + (a+a`)b`c`d`e`
=ce + b`c`d`e`

