
Lecture 8 

The Karnaugh Map or K-map 



Minimization of Boolean expressions 

 The minimization will result in reduction of the number of 
gates (resulting from less number of terms) and the 
number of inputs per gate (resulting from less number of 
variables per term) 

 The minimization will reduce cost, efficiency and power 
consumption. 

 y(x+x`)=y.1=y 

 y+xx`=y+0=y 

 (x`y+xy`)=xy 

 (x`y`+xy)=(xy)` 

 

 



Minimum SOP and POS   

 The minimum sum of products (MSOP) of a 
function, f, is a SOP representation of f 
that contains the fewest number of product 
terms and fewest number of literals of any 
SOP representation of f. 



Minimum SOP and POS 

 f= (xyz +x`yz+ xy`z+ …..) 

Is called sum of products. 

 

The + is sum operator which is an OR gate. 

The product  such as xy is an AND gate for 
the two inputs x and y.  

 



Example  

 Minimize the following Boolean function 
using sum of products (SOP): 
 

 f(a,b,c,d) = m(3,7,11,12,13,14,15)  
 

     abcd     

3   0011 

7   0111 

11 1011 

12 1100 

13 1101 

14 1110 

15 1111 

  

a`b`cd 

a`bcd 

ab`cd 

abc`d` 

abc`d 

abcd` 

abcd 



Example 

f(a,b,c,d) = m(3,7,11,12,13,14,15)  
=a`b`cd + a`bcd + ab`cd + abc`d`+ abc`d + abcd` + 

abcd  
=cd(a`b`  + a`b  + ab`) + ab(c`d` +  c`d +  cd` +  cd ) 
=cd(a`[b`  + b]  + ab`) + ab(c`[d` +  d] +  c[d` +  d]) 
=cd(a`[1]  + ab`) + ab(c`[1] +  c[1]) 
=ab+ab`cd + a`cd  
=ab+cd(ab` + a`) 
=ab+ cd(a + a`)(a`+b`) 
= ab + a`cd + b`cd       
 = ab +cd(a` + b`) 

 



Minimum product of sums (MPOS) 

 The minimum product of sums (MPOS) of a 
function, f, is a POS representation of f that 
contains the fewest number of sum terms 
and the fewest number of literals of any POS 
representation of f. 

 The zeros are considered exactly the same 
as ones in the case of sum of product (SOP) 



Example 

 f(a,b,c,d) = M(0,1,2,4,5,6,8,9,10)     

=m(3,7,11,12,13,14,15) 

=[(a+b+c+d)(a+b+c+d`)(a+b`+c`+d`) 

(a`+b+c`+d`)(a`+b`+c+ d)(a`+b`+c+ 
d`)  (a`+b`+c`+d)(a`+b`+c`+d`)] 

 

 



The Karnaugh Map 

 Feel a little difficult using Boolean 
algebra laws, rules, and theorems to 
simplify logic? 

 A K-map provides a systematic method 
for simplifying Boolean expressions and, 
if properly used, will produce the 
simplest SOP or POS expression 
possible, known as the minimum 
expression. 

 



What is K-Map 
 It’s similar to truth table; instead of being 

organized (i/p and o/p) into columns and rows, 
the K-map is an array of cells in which each cell 
represents a binary value of the input variables. 

 The cells are arranged in a way so that 
simplification of a given expression is simply a 
matter of properly grouping the cells. 

 K-maps can be used for expressions with 2, 3, 4, 
and 5 variables. 

 3 and 4 variables will be discussed to illustrate the 
principles. 



The 3 Variable K-Map 
 There are 8 cells as shown: 

 
C 

AB 
0 1 

00 

01 

11 

10 

CBA CBA

CBA BCA

CAB ABC

CBA CBA



The 4-Variable K-Map 

CD 

AB 
00 01 11 10 

00 

01 

11 

10 DCBA

DCAB

DCBA

DCBA

DCBA

DCAB

DCBA

DCBA

CDBA

ABCD

BCDA

CDBA

DCBA

DABC

DBCA

DCBA



 CD 

AB 
00 01 11 10 

00 

01 

11 

10 

Cell Adjacency 



K-Map SOP Minimization 

 The K-Map is used for simplifying 
Boolean expressions to their minimal 
form. 

 A minimized SOP expression contains 
the fewest possible terms with fewest 
possible variables per term. 

 Generally, a minimum SOP expression 
can be implemented with fewer logic 
gates than a standard expression. 



Mapping a Standard SOP 
Expression 

 For an SOP 
expression in 
standard form: 
 A 1 is placed on the K-

map for each product 
term in the expression. 

 Each 1 is placed in a 
cell corresponding to 
the value of a product 
term. 

 Example: for the 
product term        , a 
1 goes in the 101 cell 
on a 3-variable map. 

C 

AB 
0 1 

00 

01 

11 

10 

CBA CBA

CBA BCA

CAB ABC

CBA CBA

CBA

1 



C 

AB 
0 1 

00 

01 

11 

10 

Mapping a Standard SOP 
Expression (full example) 

The expression:  

CBACABCBACBA 

000 001 110 100 

1 1 

1 

1 

DCBADCBADCABABCDDCABDCBACDBA

CBACBABCA

ABCCABCBACBA






Practice: 



Mapping a Nonstandard SOP 
Expression 

 A Boolean expression must be in 
standard form before you use a K-map. 

 If one is not in standard form, it must be 
converted. 

 You may use the procedure mentioned 
earlier or use numerical expansion. 



Mapping a Nonstandard SOP 
Expression 

 Numerical Expansion of a Nonstandard product 
term 

 Assume that one of the product terms in a certain 3-
variable SOP expression is     . 

 It can be expanded numerically to standard form as 
follows: 

 Step 1: Write the binary value of the two variables and 
attach a 0 for the missing variable    : 100. 

 Step 2: Write the binary value of the two variables and 
attach a 1 for the missing variable    : 100.  

 The two resulting binary numbers are the values of 
the standard SOP terms        and       . 

 If the assumption that one of the product term 
in a 3-variable expression is B. How can we do 

C

BA

C

CBA CBA



Mapping a Nonstandard SOP 
Expression 

 Map the following SOP expressions on K-maps: 

 

  

DBCADACDCA

CDBADCBADCBACABBACB

CABC

CABBAA











K-Map Simplification of SOP 
Expressions 

 After an SOP expression has been 
mapped, we can do the process of 
minimization: 

 Grouping the 1s 

 Determining the minimum SOP expression 
from the map 



Grouping the 1s 

 You can group 1s on the K-map 
according to the following rules by 
enclosing those adjacent cells 
containing 1s. 

 The goal is to maximize the size of 
the groups and to minimize the 
number of groups. 



Grouping the 1s (rules) 
1. A group must contain either 1,2,4,8,or 16 cells 

(depending on number of variables in the 
expression) 

2. Each cell in a group must be adjacent to one or 
more cells in that same group, but all cells in the 
group do not have to be adjacent to each other. 

3. Always include the largest possible number of 1s 
in a group in accordance with rule 1. 

4. Each 1 on the map must be included in at least 
one group. The 1s already in a group can be 
included in another group as long as the 
overlapping groups include noncommon 1s. 



Grouping the 1s (example) 

C 

AB 
0 1 

00 1 

01 1 

11 1 1 

10 

C 

AB 
0 1 

00 1 1 

01 1 

11 1 

10 1 1 



Grouping the 1s (example) 
CD 

AB 00 01 11 10 

00 1 1 

01 1 1 1 1 

11 

10 1 1 

CD 

AB 00 01 11 10 

00 1 1 

01 1 1 1 

11 1 1 1 

10 1 1 1 



Determining the Minimum SOP 
Expression from the Map 

 The following rules are applied to find the 
minimum product terms and the minimum 
SOP expression: 

1. Group the cells that have 1s. Each group of cell 
containing 1s creates one product term 
composed of all variables that occur in only one 
form (either complemented or complemented) 
within the group. Variables that occur both 
complemented and uncomplemented within the 
group are eliminated  called contradictory 
variables. 



Determining the Minimum SOP 
Expression from the Map 

2. Determine the minimum product term for 
each group. 
 For a 3-variable map: 

1. A 1-cell group yields a 3-variable product term 

2. A 2-cell group yields a 2-variable product term 

3. A 4-cell group yields a 1-variable product term 

4. An 8-cell group yields a value of 1 for the expression. 

 For a 4-variable map: 
1. A 1-cell group yields a 4-variable product term 

2. A 2-cell group yields a 3-variable product term 

3. A 4-cell group yields a 2-variable product term 

4. An 8-cell group yields a a 1-variable product term 

5. A 16-cell group yields a value of 1 for the expression. 

 



Determining the Minimum SOP 
Expression from the Map 

3. When all the minimum product terms are 
derived from the K-map, they are summed 
to form the minimum SOP expression. 

 



Determining the Minimum SOP 
Expression from the Map (example) 

CD 

AB 
00 01 11 10 

00 1 1 

01 1 1 1 1 

11 1 1 1 1 

10 1 

B

CA

DCA

DCACAB 



Determining the Minimum SOP 
Expression from the Map 
(exercises) 

CBABCAB 

C 

AB 
0 1 

00 1 

01 1 

11 1 1 

10 

C 

AB 
0 1 

00 1 1 

01 1 

11 1 

10 1 1 

ACCAB 



Determining the Minimum SOP 
Expression from the Map 
(exercises) 

DBACABA  CBCBAD 

CD 

AB 00 01 11 10 

00 1 1 

01 1 1 1 1 

11 

10 1 1 

CD 

AB 00 01 11 10 

00 1 1 

01 1 1 1 

11 1 1 1 

10 1 1 1 



Practicing K-Map (SOP) 

DCBADABCDBCADCBA

CDBACDBADCABDCBADCB

CBACBACBABCACBA







CAB 

CBD 



Mapping Directly from a Truth 
Table 
I/P O/P 

A B C X 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 

C 

AB 
0 1 

00 

01 

11 

10 

1 

1 

1 

1 



“Don’t Care” Conditions 

 Sometimes a situation arises in which some 
input variable combinations are not allowed, 
i.e. BCD code: 

 There are six invalid combinations: 1010, 1011, 
1100, 1101, 1110, and 1111. 

 Since these unallowed states will never occur 
in an application involving the BCD code  

they can be treated as “don’t care” terms 
with respect to their effect on the output. 

 The “don’t care” terms can be used to 
advantage on the K-map (how? see the next 
slide). 



“Don’t Care” Conditions 
INPUTS O/P 

A B C D Y 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 1 

1 0 1 0 X 

1 0 1 1 X 

1 1 0 0 X 

1 1 0 1 X 

1 1 1 0 X 

1 1 1 1 X 

CD 

AB 
00 01 11 10 

00 

01 1 

11 x x x x 

10 1 1 x x 

BCDACBAY 
Without “don’t care” 

BCDAY 
With “don’t care” 



K-Map POS Minimization 

 The approaches are much the same (as 
SOP) except that with POS expression, 
0s representing the standard sum terms 
are placed on the K-map instead of 1s. 



C 

AB 
0 1 

00 

01 

11 

10 

Mapping a Standard POS 
Expression (full example) 

The expression:  

))()()(( CBACBACBACBA 

000 010 110 101 

0 

0 

0 

0 



K-map Simplification of POS 
Expression 

))()()()(( CBACBACBACBACBA 

C 

AB 
0 1 

00 

01 

11 

10 BA

0 0 

0 0 

0 
AC

CB 

A

1 

1 1 

)( CBA 

ACBA 



Karnaugh Maps (K-maps) 

 Karnaugh maps -- A tool for 
representing Boolean functions of up to 
six variables. 

 K-maps are tables of rows and columns 
with entries represent 1`s or 0`s of 
SOP and POS representations. 

 



Karnaugh Maps (K-maps) 

 An n-variable K-map has 2n cells with each 
cell corresponding to an n-variable truth table 
value. 
 

 K-map cells are labeled with the 
corresponding truth-table row. 
 

 K-map cells are arranged such that adjacent 
cells correspond to truth rows that differ in 
only one bit position (logical adjacency).  
 
 



Karnaugh Maps (K-maps) 

 If mi is a minterm of f, then place a 1 in 
cell i of the K-map. 

 

 If Mi is a maxterm of f, then place a 0 in 
cell i. 

 

 If di is a don’t care of f, then place a d 
or x in cell i. 

 



Examples 

 Two variable K-map 
f(A,B)=m(0,1,3)=A`B`+A`B+AB 

 

 

1 0 

1 1 

A    0    1 B
  0

     1
 



Three variable map 

 f(A,B,C) = 
m(0,3,5)= 
A`B`C`+A`BC+AB`
C 

1 

1 
A`BC 

1 
AB`C 

A`B` 

0  0 

A`B 

0  1 

A  B 

1  1   

A  B` 

1  0 

C` 

0 

C 

1 

A`B`C` 



Maxterm example 

 f(A,B,C) = M(1,2,4,6,7) 

=(A+B+C`)(A+B`+C)(A`+B+C) )(A`+B`+C) (A`+B`+C`) 

Note that the complements are (0,3,5) which are the minterms 
of the previous example 

 

  0 0 0 

0   0   

A`B` A`B AB AB` 

C` 

C 

(A+B)  (A+B`) (A`+B`) (A`+B) 

C 

C` 



Four variable example 
(a) Minterm form.  (b) Maxterm form. 

f(a,b,Q,G) = m(0,3,5,7,10,11,12,13,14,15) = M(1,2,4,6,8,9) 



Simplification of Boolean Functions 
Using K-maps 

 K-map cells that are physically adjacent are also 
logically adjacent.  Also, cells on an edge of a K-map 
are logically adjacent to cells on the opposite edge of 
the map. 

 

 If two logically adjacent cells both contain logical 1s, 
the two cells can be combined to eliminate the 
variable that has value 1 in one cell’s label and value 
0 in the other. 



Simplification of Boolean Functions 
Using K-maps 

 This is equivalent to the algebraic 
operation, aP + a P =P where P is a 
product term not containing a or a. 

 

 A group of cells can be combined only if 
all cells in the group have the same 
value for some set of variables. 

 

 



Simplification Guidelines for K-maps 

 Always combine as many cells in a group as 
possible.  This will result in the fewest number of 
literals in the term that represents the group. 

 Make as few groupings as possible to cover all 
minterms.  This will result in the fewest product 
terms. 

 Always begin with the largest group, which 
means if you can find eight members group is 
better than two four groups and one four group 
is better than pair of two-group. 



  Example  
Simplify f= A`BC`+ A B C`+ A B C using;   

(a) Sum of minterms.  (b) Maxterms. 

C

AB

00 01 11 10

0 2 6 4

1 3 7 5

0

1

B

0

0C

A

C

AB

00 01 11 10

0 2 6 4

1 3 7 5

0

1C

A

B

(b) (c)

Universal set

BC

A

B AB

AB

C

BC

1 1

1 0

0

(a)

0

a- f(A,B,C) = AB + BC b- f(A,B,C) = B(A +  C) 

F`= B`+ A`C F = B(A+C`) 

 

 Each cell of an n-variable K-map has n logically 
adjacent cells. 



Example Simplify 

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

1

A

C

1 1

(a) (b)

1

1

1

1 1

1 1

1 1

1 1

1 1 1

1

1 1

11 1

1

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

1

A

C

1 1

(c) (d)

1

1

1

1 1

1 1

1 1

1 1

1 1 1

1

1 1

11 1

1

f(A,B,C,D) = m(2,3,4,5,7,8,10,13,15) 



 Example Multiple selections 

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

1

A

C

1 1

(a) (b)

1

1

1

1 1

1 1

1 1

1 1

1 1 1

1

1 1

11 1

1

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

B

D

A

C

1 1

1 1

1 1

1 1

1

(c)

f(A,B,C,D) = m(2,3,4,5,7,8,10,13,15) 

 c produces less terms than a 



  Example  Redundant selections 

 f(A,B,C,D) = m(0,5,7,8,10,12,14,15) 

1

1 1

1

1 11

1

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00
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C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00
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B
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A

C

(a) (b)

1

1 1

1

1

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00
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11
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B

D

A

C

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00
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11
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B

D

A

C

1

(c) (d)

1

1

1

1 1

1

1

1 11

1

1
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1

1 11

1

1

1 1

1

1 11

1



Example 



Example 



Example 



f(A,B,C,D) = m(1,2,4,6,9) 

CD

AB

00 01 11 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00
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11

10

B

D

1

1 1

1 1

A

C

Step 2

Step 1

Step 3



Different styles of drawing maps 
  f(A,B,C) = m(1,2,3,6) = AC + BC 

1

C

AB

00 01 11 10

0 2 6 4

3 7 5

0

1

B

1 1

1 1

A

C

BC 

A 00 01 11 10 

0 

1 

1 1 1 

1 

1 

1 1 

1 

C 

AB 

0 1 

00 

01 

11 

10 



•Minterms that may produce either 0 or 1 for the function.  

•They are marked with an ´ in the K-map.  

•This happens, for example, when we don’t input certain 

minterms to the Boolean function.  

•These don’t-care conditions can be used to provide further 

simplification of the algebraic expression. 

(Example) F = A`B`C`+A`BC` + ABC`  

 d=A`B`C +A`BC + AB`C 

F = A` + BC`  

Don’t-care condition 



Five variable K-maps 
Use Two Four-variable K-Maps 

bc
de 00 01 11 10

00

01

11

10

bc
de 00 01 11 10

00

01

11

10

a`=0 map a=1 map 

1 

1 

1 

1 

1 

1 

1 

1 

1 1 

f(a,b,c,d,e) = m(0,5,7,13,15,16,21,23,29,31) 

a` f 

0 1 

1 

2 

3 

4 

5 1 

6 

7 1 

8 

9 

10 

11 

12 

13 1 

14 

15 1 

a f 

16 1 

17 

18 

19 

20 

21 1 

22 

23 1 

24 

25 

26 

27 

28 

29 1 

30 

31 1 



bc
de 00 01 11 10

00

01

11

10

bc
de 00 01 11 10

00

01

11

10

a`=0 map a=1 map 

1 

1 

1 

1 

1 

1 

1 

1 

1 1 

F1=a`b`c`d`e` + a`ce,   F2=ace + ab`c`d`e`  

f(a,b,c,d,e) =  f1+f2 

F=(a+a`)ce + (a+a`)b`c`d`e`  
=ce + b`c`d`e`  


