Lecture 7

Logic Simplification

Simplification Using Boolean Algebra

- A simplified Boolean expression uses the fewest gates possible to implement a given expression.

Simplification Using Boolean Algebra

- $\mathrm{AB}+\mathrm{A}(\mathrm{B}+\mathrm{C})+\mathrm{B}(\mathrm{B}+\mathrm{C})$
- (distributive law)
- $\mathrm{AB}+\mathrm{AB}+\mathrm{AC}+\mathrm{BB}+\mathrm{BC}$
- (rule $7 ; \mathrm{BB}=\mathrm{B}$)

- (rule 5; AB $+\mathrm{AB}=\mathrm{AB}$)
- $\mathrm{AB}+\mathrm{AC}+\mathrm{B}+\mathrm{BC}$
- (rule $10 ; \mathrm{B}+\mathrm{BC}=\mathrm{B}$)
- $A B+A C+B$
- (rule $10 ; \mathrm{AB}+\mathrm{B}=\mathrm{B}$)
- B+AC

Simplification Using Boolean Algebra

Assignment
$[A \bar{B}(C+B D)+\bar{A} \bar{B}] C$
$\bar{A} B C+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C+A B C$
$\overline{A B+A C}+\bar{A} \bar{B} C$

Standard Forms of Boolean Expressions

- All Boolean expressions, regardless of their form, can be converted into either of two standard forms:
- The sum-of-products (SOP) form
- The product-of-sums (POS) form
- Standardization makes the evaluation, simplification, and implementation of Boolean expressions much more systematic and easier.

Sum-of-Products (SOP)

The Sum-of-Products (SOP) Form

- An SOP expression \rightarrow when two or more product terms are summed by Boolean addition.
- Examples:

$$
\begin{aligned}
& A B+A B C \\
& A B C+C D E+\bar{B} C \bar{D} \\
& \bar{A} B+\bar{A} B \bar{C}+A C
\end{aligned}
$$

- Also:

$$
A+\bar{A} \bar{B} C+B C \bar{D}
$$

- In an SOP form, a single overbar cannot extend over more than one variable; however, more than one variable in a term can have an overbar:
- example: $\bar{A} \bar{B} \bar{C}$ is OK!
- But not: $A B C$

Implementation of an SOP

$X=A B+B C D+A C$

- AND/OR implementation
- NAND/NAND implementation

General Expression \rightarrow SOP

- Any logic expression can be changed into SOP form by applying Boolean algebra techniques.
ex:

$$
\begin{aligned}
& A(B+C D)=A B+A C D \\
& A B+B(C D+E F)=A B+B C D+B E F \\
& (A+B)(B+C+D)=A B+A C+A D+B B+B C+B D \\
& (\overline{\overline{A+B}})+C=(\overline{\overline{A+B}}) \bar{C}=(A+B) \bar{C}=A \bar{C}+B \bar{C}
\end{aligned}
$$

The Standard SOP Form

- A standard SOP expression is one in which all the variables in the domain appear in each product term in the expression.
- Example:

$$
A \bar{B} C D+\bar{A} \bar{B} C \bar{D}+A B \bar{C} \bar{D}
$$

- Standard SOP expressions are important in:
- Constructing truth tables
- The Karnaugh map simplification method

Converting Product Terms to Standard SOP

- Step 1: Multiply each nonstandard product term by a term made up of the sum of a missing variable and its complement. This results in two product terms.
- As you know, you can multiply anything by 1 without changing its value.
- Step 2: Repeat step 1 until all resulting product term contains all variables in the domain in either complemented or uncomplemented form. In converting a product term to standard form, the number of product terms is doubled for each missing variable.

Converting Product Terms to Standard SOP (example)

- Convert the following Boolean expression into standard SOP form:

$$
A \bar{B} C+\bar{A} \bar{B}+A B \bar{C} D
$$

$$
\begin{aligned}
& A \bar{B} C=A \bar{B} C(D+\bar{D})=A \bar{B} C D+A \overline{\bar{B}} C \overline{\bar{D}} \\
& \bar{A} \bar{B}=\bar{A} \bar{B}(C+\bar{C})=\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C} \\
& \bar{A} \bar{B} C(D+\bar{D})+\bar{A} \bar{B} \bar{C}(D+\bar{D})=1 \begin{array}{c}
\bar{B} C D+\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} D+\bar{A} \bar{B} \bar{C}
\end{array}
\end{aligned}
$$

$$
A \bar{B} C+\bar{A} \bar{B}+A B \bar{C} D=A \bar{A} C D+A \bar{B} C \bar{D}++\overline{\bar{A}} \bar{B} C D+\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} \bar{C} \bar{D}+A B \bar{C} D
$$

Binary Representation of a Standard Product Term

- A standard product term is equal to 1 for only one combination of variable values.
- Example: $A \bar{B} C \bar{D}$ is equal to 1 when $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1$, and $\mathrm{D}=0$ as shown below

$$
A \bar{B} C \bar{D}=1 \bullet \overline{0} \bullet 1 \bullet \overline{0}=1 \bullet 1 \bullet 1 \bullet 1=1
$$

- And this term is 0 for all other combinations of values for the variables.

Product-of-Sums (POS)

The Product-of-Sums (POS) Form

- When two or more sum terms are multiplied, the result expression is a product-of-sums (POS):
- Examples:

$$
\begin{aligned}
& (\bar{A}+B)(A+\bar{B}+C) \\
& (\bar{A}+\bar{B}+\bar{C})(C+\bar{D}+E)(\bar{B}+C+D) \\
& (A+B)(A+\bar{B}+C)(\bar{A}+C)
\end{aligned}
$$

- Also:

$$
\bar{A}(\bar{A}+\bar{B}+C)(B+C+\bar{D})
$$

- In a POS form, a single overbar cannot extend over more than one variable; however, more than one variable in a term can have an overbar:
- example: $\bar{A}+\bar{B}+\bar{C}$ is OK !
- But not: $\overline{A+B+C}$

Implementation of a POS

$$
X=(A+B)(B+C+D)(A+C)
$$

- OR/AND implementation

The Standard POS Form

- A standard POS expression is one in which all the variables in the domain appear in each sum term in the expression.
- Example: $(\bar{A}+\bar{B}+\bar{C}+\bar{D})(A+\bar{B}+C+D)(A+B+\bar{C}+D)$
- Standard POS expressions are important in:
- Constructing truth tables
- The Karnaugh map simplification method

Converting a Sum Term to Standard

POS

- Step 1: Add to each nonstandard product term a term made up of the product of the missing variable and its complement. This results in two sum terms.
- As you know, you can add 0 to anything without changing its value.
- Step 2: Apply rule $12 \rightarrow \mathrm{~A}+\mathrm{BC}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})$.
- Step 3: Repeat step 1 until all resulting sum terms contain all variable in the domain in either complemented or uncomplemented form.

Converting a Sum Term to Standard POS (example)

- Convert the following Boolean expression into standard POS form:

$$
\begin{aligned}
& \quad(A+\bar{B}+C)(\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D) \\
& A+\bar{B}+C=A+\bar{B}+C+D \bar{D}=(A+\cdots+C+\bar{B})(A+\cdots+C+\overline{\bar{B}} \overline{\bar{B}} \\
& \bar{B}+C+\bar{D}=\bar{B}+C+\bar{D}+A \bar{A}=(A+\bar{B}+C+\bar{D})(\bar{A}+\bar{B}+C+\bar{D}) \\
& (A+\bar{B}+C)(\bar{B}+C+\bar{D}) \\
& (A+\bar{B}+\bar{C}+D)=
\end{aligned}
$$

Binary Representation of a Standard

Sum Term

- A standard sum term is equal to 0 for only one combination of variable values.
- Example: $A+\bar{B}+C+\bar{D}$ is equal to 0 when $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=0$, and $\mathrm{D}=1$ as shown below

$$
A+\bar{B}+C+\bar{D}=0+\overline{1}+0+\overline{1}=0+0+0+0=0
$$

- And this term is 1 for all other combinations of values for the variables.

SOP /POS

Converting Standard SOP to Standard POS

- The Facts:

■ The binary values of the product terms in a given standard SOP expression are not present in the equivalent standard POS expression.

- The binary values that are not represented in the SOP expression are present in the equivalent POS expression.

Converting Standard SOP to Standard POS

- What can you use the facts?
- Convert from standard SOP to standard POS.
- How?
- Step 1: Evaluate each product term in the SOP expression. That is, determine the binary numbers that represent the product terms.
- Step 2: Determine all of the binary numbers not included in the evaluation in Step 1.
- Step 3: Write the equivalent sum term for each binary number from Step 2 and express in POS form.

Converting Standard SOP to Standard POS (example)

- Convert the SOP expression to an equivalent POS expression:

$$
\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} B C+A \bar{B} C+A B C
$$

- The evaluation is as follows:

$$
000+010+011+101+111
$$

- There are 8 possible combinations. The SOP expression contains five of these, so the POS must contain the other 3 which are: 001,100 , and 110 .

$$
(A+B+\bar{C})(\bar{A}+B+C)(\bar{A}+\bar{B}+C)
$$

Boolean Expressions \& Truth Tables

- All standard Boolean expression can be easily converted into truth table format using binary values for each term in the expression.
- Also, standard SOP or POS expression can be determined from the truth table.

Converting SOP Expressions to Truth Table Format

- Recall the fact:
- An SOP expression is equal to 1 only if at least one of the product term is equal to 1 .
- Constructing a truth table:
- Step 1: List all possible combinations of binary values of the variables in the expression.
- Step 2: Convert the SOP expression to standard form if it is not already.
- Step 3: Place a 1 in the output column (X) for each binary value that makes the standard SOP expression a 1 and place 0 for all the remaining binary values.

Converting SOP Expressions to Truth Table Format (example)

- Develop a truth table for the standard SOP expression

$$
\bar{A} \bar{B} C+A \bar{B} \bar{C}+A B C
$$

Inputs			Output	Product Term
A	B	C	X	
0	0	0	0	
0	0	1	1	$\bar{A} \bar{B} C$
0	1	0	0	
0	1	1	0	
1	0	0	1	$A \bar{B} \bar{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	$A B C$

Converting POS Expressions to Truth Table Format

- Recall the fact:
- A POS expression is equal to 0 only if at least one of the product term is equal to 0 .
- Constructing a truth table:
- Step 1: List all possible combinations of binary values of the variables in the expression.
- Step 2: Convert the POS expression to standard form if it is not already.
- Step 3: Place a 0 in the output column (X) for each binary value that makes the standard POS expression a 0 and place 1 for all the remaining binary values.

Converting POS Expressions to Truth Table Format (example)

- Develop a truth table for the standard SOP expression

$$
\begin{aligned}
& (A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C}) \\
& (\bar{A}+B+\bar{C})(\bar{A}+\bar{B}+C)
\end{aligned}
$$

Inputs			Output	Product Term
A	B	C	X	
0	0	0	0	$(A+B+C)$
0	0	1	1	
0	1	0	0	$(A+\bar{B}+C)$
0	1	1	0	$(A+\bar{B}+\bar{C})$
1	0	0	1	
1	0	1	0	$(\bar{A}+B+\bar{C})$
1	1	0	0	$(\bar{A}+\bar{B}+C)$
1	1	1	1	

Determining Standard Expression from a Truth Table

- To determine the standard SOP expression represented by a truth table.
- Instructions:
- Step 1: List the binary values of the input variables for which the output is 1 .
- Step 2: Convert each binary value to the corresponding product term by replacing:
- each 1 with the corresponding variable, and
- each 0 with the corresponding variable complement.
- Example: $1010 \rightarrow A \bar{B} C \bar{D}$

Determining Standard Expression from a Truth Table

- To determine the standard POS expression represented by a truth table.
- Instructions:
- Step 1: List the binary values of the input variables for which the output is 0 .
- Step 2: Convert each binary value to the corresponding product term by replacing:
- each 1 with the corresponding variable complement, and
- each 0 with the corresponding variable.

■ Example: $1001 \rightarrow \bar{A}+B+C+\bar{D}$

Determining Standard Expression from a Truth Table (example)

I / P			$0 / \mathrm{P}$
A	B	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- There are four 1s in - There are four 0s in the output and the the output and the corresponding corresponding binary value are 011 , 100,110 , and 111. binary value are 000 , 001,010 , and 101.

$$
\begin{array}{ll}
011 \rightarrow \bar{A} B C & 000 \rightarrow A+B+C \\
100 \rightarrow A \bar{B} \bar{C} & 001 \rightarrow A+B+\bar{C} \\
110 \rightarrow A B \bar{C} \\
111 \rightarrow A B C & 010 \rightarrow A+\bar{B}+C \\
101 \rightarrow \bar{A}+B+\bar{C}
\end{array}
$$

$$
X=\bar{A} B C+A \bar{B} \bar{C}+A B \bar{C}+A B C
$$

$$
X=(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(\bar{A}+B+\bar{C})
$$

Rules of Boolean Algebra

$$
\begin{array}{ll}
1 . A+0=A & 7 . A \bullet A=A \\
2 . A+1=1 & 8 . A \bullet \bar{A}=0 \\
3 . A \bullet 0=0 & 9 . \overline{\bar{A}}=A \\
4 . A \bullet 1=A & 10 . A+A B=A \\
5 . A+A=A & 11 . A+\bar{A} B=A+B \\
6 . A+\bar{A}=1 & 12 .(A+B)(A+C)=A+B C
\end{array}
$$

