Lecture 4 Binary Arithmetic

Binary Arithmetic

- Addition
- Subtraction
- •Complements 1's and 2's

Binary Addition

Binary Addition Examples

Binary Complement (1s Complement) Operation 1 0

 $0 \longrightarrow 1$
Example

Two's Complement

The Two's complement of a binary number is obtained by first complementing the number and then adding 1 to the result.

1001110
0110001 — One's Complement
+ 1

0110010 — Two's Complement

Binary Subtraction

Binary subtraction is implemented by adding the Two's complement of the number to be subtracted.

Two's

Example

1101 -1001 complement of 1001 +011 10100

If there is a carry then it is ignored. Thus, the answer is 0100.

Basic Digital Arithmetic

- Signed Binary Number: A binary number of fixed length whose sign (+/-) is represented by one bit (usually MSB) and its magnitude by the remaining bits
- Unsigned Binary Number: A binary number of fixed length whose sign is not specified by a bit. All bits are magnitude and the sign is assumed +.

Signed Binary Numbers I

- Sign Bit: A bit (usually the MSB) that indicates whether a number is positive(=0) or negative (=1).
- Magnitude Bits: The bits of a signed binary number that tell how large it is in value.
- True Magnitude Form: A form of signed binary whose magnitude bits are the TRUE binary form (not complements).

Signed Binary Numbers II

- 1s Complement: A form of signed binary in which negative numbers are created by complementing all bits.
- 2s Complement: A form of signed binary in which the negative numbers are created by complementing all the bits and adding a 1 (1s Complement +1).

Unsigned Binary Arithmetic

- Sum: Result of an Addition Operation of two (or more) binary numbers (operands).
- Carry: A digit (or bit) that is carried over to the next most significant bit during an N Bit addition operation.
- The carry bit is a 1 if the result was too large to be expressed in N bits.

Basic Rules (Unsigned)

One Bit Unsigned Addition

$$0+0= 00$$
 $1+0= 01$
 $1+1= 10$

CIN A B COUT SUM

True Magnitude Form

• 5 Bit Numbers Negative = S=1

2's complement of a binary number:

- Take the 1's complement of the number
- Add 1 to the least-significant-bit position

101101	binary equivalent of 45
010010	complement each bit to form 1's complement
<u>+ 1</u>	add 1 to form 2's complement
010011	2's complement of original binary number

Representing signed numbers using 2's complement form

- If the number is positive, the magnitude is represented in its positional-weighted binary form, and a sign bit of 0 is placed in front of the MSB.
- If the number is negative, the magnitude is represented in its 2's complement form, and a sign bit of 1 is placed in front of the MSB.

example

Example

 Represent each of the following signed decimal numbers as a signed binary number in the 2's-complement system. Use a total of five bits including the sign bit.

(a)
$$+13$$
 (b) -9 (c) $+3$ (d) -2 (e) -8

Addition in the 2's-complement system

Case I: Two Postive Numbers.

$$+9 \rightarrow 0$$
 1001 (augend)
 $+4 \rightarrow 0$ 0100 (addend)
 0^{1} 1101 (sum = +13)
Sign bits

 Case II: Positive Number and Smaller Negative Number

$$+9 \rightarrow 0$$
 1001 (augend)
$$-4 \rightarrow 1$$
 1100 (addend)
$$1 0 0101$$

$$This carry is disregarded; the result is 0101(sum=+5)$$

 Case III: Positive Number and Larger Negative Number

```
Negative sign bit
-9 \rightarrow 10111
+4 \rightarrow 00100
11011 \text{ (sum = -5)}
```

Case IV: two negative Numbers

```
-9 → 10111
-4 \rightarrow 11100
1 10011

This carry is disregarded; the result is 10011(sum = -13)
```

Negative Result Example

• 2s Complement Negative Result (65-80)

$$+65 = 0\ 100\ 0001$$
 $100\ 0001$ $-80 = 1\ 101\ 0000\ (2s\ C.)$ $+011\ 0000$ $111\ 0001$ Invert $000\ 1111$ $Add\ 1$ $+$ 1 Final Result = -15 $0000\ 1111 = 15$ (Neg.)

Case V: Equal and Opposite Numbers

$$\begin{array}{c} -9 \rightarrow 1 \quad 0111 \\ +9 \rightarrow 0 \quad 1001 \\ \hline 0 \quad 1 \quad 0000 \\ \hline Disregard; the result is \\ 0000(sum = +0) \end{array}$$

Subtraction in the 2's-complement System

- The procedure for subtracting one binary number(the subtrahend) from another binary number(the minuend)
 - Negate the subtrahend. This will change the subtrahend to its equivalent value of opposite sign.
 - Add this to the minuend. The result of this addition will represent the difference between the subtrahend and the minuend.

Addition and Subtraction of BCD and Excess-3 Code

<u>Unsigned Numbers BCD Addition</u>

If result is > 9, it must generate a carry and be corrected! To correct the digit, add 0110 in the result.

8 1000 Eight We try to avoid subtraction!
$$+5$$
 $+0101$ Plus 5 Replacing it with addition! 13 1101 13 (is > 9) $+0110$ so add 6 (always, for results > 9) carry = 1 0011 giving 3 + carry 0001 | 0011 Final answer (two digits)

The adder circuit utilizes the resulting carry bit by sending it as carry-in to the next digit

Add 2905_{BCD} to 1857_{BCD} showing carries and digit corrections.

Excess-3 Code

A BCD Code formed by adding 3 (0011) to its true 4-bit binary value.

"Excess-3 is a self-complementing code:

"A negative code equivalent can be found by inverting the binary bits of the positive code "Inverting the bits of the Excess-3 digit yields 9's Complement of the decimal equivalent.

Example: Excess -3 code of decimal 4 is 0111. (0100 + 0011 = 0111)

- (4) = 0111
- (-4) = 1000 (inverting the bits) which is Excess -3 code of decimal 5.

It is 9's complement of the decimal equivalent. (9 - 4 = 5)

Excess-3 Examples

$$3 = 0011 + 0011 = 0110 = 6$$
 in E3.

$$1 = 0001 + 0011 = 0100 = 4$$
 in E3.

"If we complement 1 = 1011 in E3, this

is the code for an 8.

 \mathfrak{B} 's Complement of 1 = (9 - 1) = 8 (SelfComplement)