Lecture 4

Binary Arithmetic

Binary Arithmetic

- Addition

-Subtraction
-Complements - 1's
and 2's

Binary Addition

Binary Addition Examples

(a) 1011
(b) $\mathbf{1 0 1 0}$
1110
(c) 1011
$+101$
10000
(d) 101
$+1001$
1110
(e) 10011001 $+\quad 101100$ 11000101

Binary Complement

$\mathbf{1}^{1 \mathrm{~s} \text { Complement) Operation }}$

$0 \rightarrow 1$
Example

$$
\begin{aligned}
& 1100101111010 \\
& 00110101001 \\
& 0
\end{aligned}
$$

Two's Complement

The Two's complement of a binary number is obtained by first complementing the number and then adding 1 to the result. 1001110
$0110001 \Longleftarrow$ One's Complement $+\quad 1$
$0110010 \longleftarrow$ Two's Complement

Binary Subtraction

Binary subtraction is implemented by adding the Two's complement of the number to be subtracted.
Example

$$
\begin{array}{r}
1101 \\
-1001
\end{array}
$$

If there is a carry then it is ignored. Thus, the answer is 0100.

Basic Digital Arithmetic

- Signed Binary Number: A binary number of fixed length whose sign (+/-) is represented by one bit (usually MSB) and its magnitude by the remaining bits
- Unsigned Binary Number: A binary number of fixed length whose sign is not specified by a bit. All bits are magnitude and the sign is assumed + .

Signed Binary Numbers I

- Sign Bit: A bit (usually the MSB) that indicates whether a number is positive $(=0)$ or negative ($=1$).
- Magnitude Bits: The bits of a signed binary number that tell how large it is in value.
- True Magnitude Form: A form of signed binary whose magnitude bits are the TRUE binary form (not complements).

Signed Binary Numbers II

- 1s Complement: A form of signed binary in which negative numbers are created by complementing all bits.
- 2s Complement: A form of signed binary in which the negative numbers are created by complementing all the bits and adding a 1 (1 s Complement +1).

Unsigned Binary Arithmetic

- Sum: Result of an Addition Operation of two (or more) binary numbers (operands).
- Carry: A digit (or bit) that is carried over to the next most significant bit during an N Bit addition operation.
- The carry bit is a 1 if the result was too large to be expressed in N bits.

Basic Rules (Unsigned)

- One Bit Unsigned Addition

$$
\begin{array}{rlrl}
0+0 & = & 0 & 0 \\
1+0 & = & 0 & 1 \\
1+1 & = & 1 & 0
\end{array}
$$

True Magnitude Form

- 5 Bit Numbers Negative $=S=1$
$+25=011001$
$-25=111001$
$-12=12=01100$
$+12=01100$ $\begin{aligned} & \text { Note sign bit }=\mathrm{MSB}=\mathrm{S}=0 \\ & \text { Same as }+25 \text { with } \mathrm{S}=1\end{aligned}$

2's complement of a binary number:

- Take the 1's complement of the number
- Add 1 to the least-significant-bit position

101101	binary equivalent of 45
010010	complement each bit to form 1's complement
$+\quad 1$	add 1 to form 2's complement
010011	2's complement of original binary number

Representing signed numbers using 2's complement form

- If the number is positive, the magnitude is represented in its positional-weighted binary form, and a sign bit of 0 is placed in front of the MSB.
- If the number is negative, the magnitude is represented in its 2's complement form, and a sign bit of 1 is placed in front of the MSB.

example

Sign bit (-) 2's complement

Example

- Represent each of the following signed decimal numbers as a signed binary number in the 2 's-complement system. Use a total of five bits including the sign bit.
(a) +13 (b) -9 (c) +3 (d) -2 (e) -8

Addition in the 2's-complement system

- Case I: Two Postive Numbers.

Sign bits

Addition, cont.

- Case II: Positive Number and Smaller Negative Number

Addition, cont.

- Case III: Positive Number and Larger Negative Number

Negative sign bit
$-9 \rightarrow 10111$
$+4 \rightarrow 00100$
11011 (sum = -5)

Addition, cont.

- Case IV: two negative Numbers
$-9 \rightarrow 10111$
$-4 \rightarrow 11100$
1 10011 Sign bit
110011

This carry is disregarded; the result is
10011 (sum $=-13$)

Negative Result Example

- 2 s Complement Negative Result (65-80)

$+65=$	01000001
$-80=$	1000001
	$1010000(2 \mathrm{~s} \mathrm{C})$.
	1110001 +0110000
Invert	0001111
Add 1	$+\quad 1$

Final Result $=-15 \quad 00001111=15($ Neg. $)$

Addition, cont.

- Case V: Equal and Opposite Numbers
$-9 \rightarrow 10111$
$+9 \rightarrow 01001$
$0 \quad 10000$
Disregard; the result is
0000(sum $=+0$)

Subtraction in the 2's-complement

System

- The procedure for subtracting one binary number(the subtrahend) from another binary number(the minuend)
- Negate the subtrahend. This will change the subtrahend to its equivalent value of opposite sign.
- Add this to the minuend. The result of this addition will represent the difference between the subtrahend and the minuend.

Addition and Subtraction of BCD and Excess-3 Code

Unsigned Numbers BCD Addition

Use binary arithmetic to add the BCD digits:

8	1000	Eight
+5	+0101	Plus 5
$\frac{+5}{13}$	is $13(>9)$	

$$
\begin{array}{r}
3 \\
+5 \\
\hline 8 \text { OK }(<9)
\end{array}
$$

If result is > 9, it must generate a carry and be corrected!
To correct the digit, add 0110 in the result.

8	1000	Eight	
+ 5	+0101	Plus 5	Replacing it with addition!
13	1101	13 (is > 9)	
+0110 so add 6 (always, for results > 9)			
rry $=10011$ giving $3+$ carry			
0001\|0011 Final answer (two digits)			

The adder circuit utilizes the resulting carry bit by sending it as carry-in to the next digit

Add $2905_{B C D}$ to $1857_{B C D}$ showing carries and digit corrections.

Excess-3 Code

A BCD Code formed by adding 3 (0011) to its true 4-bit binary value.
Fxcess-3 is a self-complementing code:
A negative code equivalent can be found by inverting the binary bits of the positive code Glnverting the bits of the Excess-3 digit yields 9's Complement of the decimal equivalent. Example : Excess -3 code of decimal 4 is 0111. $(0100+0011=$ 0111)
(4) $=0111$
$(-4)=1000$ (inverting the bits) which is Excess -3 code of decimal 5.

It is 9 's complement of the decimal equivalent. $(9-4=5)$

Excess-3 Examples

$$
\begin{aligned}
& \begin{array}{l}
\text { B }=0011+0011=0110=6 \text { in E3. } \\
\text { a }=0001+0011=0100=4 \text { in E3. } \\
\text { we complement } 1=1011 \text { in E3, this } \\
\text { is the code for an } 8 .
\end{array}
\end{aligned}
$$

[母's Complement of $1=(9-1)=8$ (SelfComplement)

