PULSE CODE MODULATION



Pulse Code Modulation (PCM)

e Pulse code modulation (PCM) is produced by analog-to-
digital conversion process.

e As in the case of other pulse modulation techniques, the
rate at which samples are taken and encoded must
conform to the Nyquist sampling rate.

e The sampling rate must be greater than, twice the
highest frequency in the analog signal,

fs > 2fa(max)



3.6 Quantization Process
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Joime<m<m,f,k=12,,L (3.21)

Where m, is the decision level or the decision threshold.
Amplitudequantization : The process of transforming the

sample amplitude m(nT,) intoa discrete amp litude

v(nT,) as shownin Fig 3.9

If m(t) € J, then thequantizer outputis ve where v, kK, =1,2,---, L

are the representation or reconstruction levels , m, ., —m, Is thestepsize.
Themappingv =g(m) (3.22)

Is called the quantizer characteristic, which is a staircase function.
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Figure 3.10 Two types of quantization: (a) midtread and (b) midrise.
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Quantization Noise
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Figure 3.11 lllustration of the quantization process.
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Pulse Code Modulation
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Figure 3.13 The basic elements of a PCM system.



Quantization (nonuniform quantizer)

- law
/- log(1+ jml) (3.48)
log(1+ u)
dim| _ log(1-+ 1) 1+ gm))  (3.49)
dM U
A -law
A(m) o< ‘m‘ 3 i
=] LrlogA A (3.50)
1+log(Am|) 1 <fm] <1
- 1+logA A

( 1

1+logA 0<|ml<=
dm| _ }=— : " (3.51)
bl @+ Ay —<|m|<1




Normalized output, |v|

0.2 0.4 0.6 0.8 10 O 0.2 0.4 0.6 0.8
Normalized input, |m| Normalized input, |m|

(a) (b)

Figure 3.14 Compression laws. (a) u -law. (b) A-law.
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Encoding

TABLE 3.2 Binary number system
for R = 4 bits/sample

Ordinal Number of Level Number Expressed as Binary

Representation Level Sum of Powers of 2 Number
0 0000
1 2° 0001
5 2 0010
3 21 4+ 29 0011
4 22 0100
! b + 2° 0101
6 22 + 21 0110
7 22 + 21 + 29 0111
8 27 1000
9 2° + 29 1001

10 2° + 21 1010
11 i + 21 + 2° 1011
12 23 + 22 1100
13 27 4= D% + 2° 1101
14 234 2>+ 2 1110
15 23 4+ 22+ 2 +2° 1111
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Line codes:

1. Unipolar nonreturn-to-zero (NRZ) Signaling
2. Polar nonreturn-to-zero(NRZ) Signaling

3. Unipor nonreturn-to-zero (RZ) Signaling

4. Bipolar nonreturn-to-zero (BRZ) Signaling

5. Split-phase (Manchester code)
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Figure 3.15 Line codes for the electrical representations of binary data.
(a) Unipolar NRZ signaling. (b) Polar NRZ signaling.
(c) Unipolar RZ signaling. (d) Bipolar RZ signaling.
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Differential Encoding (encode information in terms of signal
transition; a transition is used to designate Symbol 0)
(a) Original binary data 0 1 1 0 1 0 0 1

() Differentially encoded data 1 0 0 0 1 1 0 1 1

(c) Waveform /_
Reference bit
Time —
Regeneration (reamplification, retiming, reshaping )
. Decision-
Distorted Amplifier- : Regenerated
PCM wave  ~ | equalizer T > Mmaking > PCM wave
Timing ‘
= circuit

Two measure factors: bit error rate (BER) and jitter.
Decoding and Filtering



3.8 Noise consideration in PCM systems
(Channel noise, guantization noise)

(will be discussed in Chapter 4)
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 TABLE 3.3 Influence of E,/N, on the
probability of error

For a Bit Rate of 10° bls,

Probability of This Is About One
E,/N, Error P, Error Every
4.3 dB 107 102 second
8.4 10~* 10! second
10.6 10°° 10 seconds
12.0 1078 20 minutes
13.0 10710 1 day

14.0 1072 3  months
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Time-Division Multiplexing
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Figure 3.19 Block diagram of TDM system.
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3.10 Digital Multiplexers
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3.11 Virtues, Limitations and Modifications of PCM
Advantages of PCM
1. Robustness to noise and interference
2. Efficient regeneration
3. Efficient SNR and bandwidth trade-off
4. Uniform format
5. Ease add and drop

6. Secure



