PULSE CODE MODULATION

Pulse Code Modulation (PCM)

- Pulse code modulation (PCM) is produced by analog-todigital conversion process.
- As in the case of other pulse modulation techniques, the rate at which samples are taken and encoded must conform to the Nyquist sampling rate.
- The sampling rate must be greater than, twice the highest frequency in the analog signal,

 $f_{\rm s} > 2f_{\rm A}(\max)$

3.6 Quantization Process

Define partition cell

$$\mathcal{I}_{k}: \left\{ m_{k} < m \le m_{k+1} \right\}, k = 1, 2, \cdots, L$$
 (3.21)

Where m_k is the decision level or the decision threshold. Amplitude quantization : The process of transforming the sample amplitude $m(nT_s)$ into a discrete amplitude $v(nT_s)$ as shown in Fig 3.9

If $m(t) \in \mathcal{J}_k$ then the quantizer output is v_k where v_k , $k = 1, 2, \dots, L$ are the representation or reconstruction levels, $m_{k+1} - m_k$ is the step size. The mapping v = g(m)(3.22)is called the quantizer characteristic, which is a staircase function.

Figure 3.10 Two types of quantization: (*a*) midtread and (*b*) midrise.

DCE (ECE), GURGAON

Quantization Noise

Figure 3.11 Illustration of the quantization process.

Pulse Code Modulation

Figure 3.13 The basic elements of a PCM system.

DCE (ECE), GURGAON

Quantization (nonuniform quantizer)

 μ - law

$$|\nu| = \frac{\log(1 + \mu |m|)}{\log(1 + \mu)}$$
(3.48)
$$\frac{d|m|}{d|\nu|} = \frac{\log(1 + \mu)}{\mu} (1 + \mu |m|)$$
(3.49)

A - law

$$|\nu| = \begin{cases} \frac{A(m)}{1 + \log A} & 0 \le |m| \le \frac{1}{A} \\ \frac{1 + \log(A|m|)}{1 + \log A} & \frac{1}{A} \le |m| \le 1 \end{cases}$$
(3.50)
$$\frac{d|m|}{d|\nu|} = \begin{cases} \frac{1 + \log A}{A} & 0 \le |m| \le \frac{1}{A} \\ (1 + A)|m| & \frac{1}{A} \le |m| \le 1 \\ 0 \le (EA), GURGAON \end{cases}$$
(3.51)

1/23/2015

Figure 3.14 Compression laws. (*a*) μ -law. (*b*) A-law.

Encoding

TABLE 3.2Binary number systemfor R = 4 bits/sample

Ordinal Number of Representation Level	Level Number Expressed a Sum of Powers of 2	s Binary Number
0		0000
1	2 ⁰	0001
2	21	0010
3	$2^1 + 2^0$	0011
4	2 ²	0100
5	$2^2 + 2^0$	0101
6	$2^2 + 2^1$	0110
7	$2^2 + 2^1 + 2^0$	0111
8	2 ³	1000
9	$2^3 + 2^0$	1001
10	$2^3 + 2^1$	1010
11	$2^3 + 2^1 + 2^0$	1011
12	$2^3 + 2^2$	1100
13	$2^3 + 2^2 + 2^0$	1101
14	$2^3 + 2^2 + 2^1$	1110
15	$2^3 + 2^2 + 2^1 + 2^0$	1111

Line codes:

- 1. Unipolar nonreturn-to-zero (NRZ) Signaling
- 2. Polar nonreturn-to-zero(NRZ) Signaling
- 3. Unipor nonreturn-to-zero (RZ) Signaling
- 4. Bipolar nonreturn-to-zero (BRZ) Signaling
- 5. Split-phase (Manchester code)

1/23/2015

(*e*) Split-phase or Manହନିଶ୍ରେହେନ୍ଦ୍ରେଶ୍ୱ/ହ୍ରା

1/23/2015

Differential Encoding (encode information in terms of signal transition; a transition is used to designate Symbol 0) (a) Original binary data 0 1 1 0 0 0 1 1 (b) Differentially encoded data 0 0 1 1 0 1 1 0 1 (c) Waveform Reference bit Time -----**Regeneration** (reamplification, retiming, reshaping) Decision-Amplifier-Distorted Regenerated making equalizer PCM wave PCM wave device Timing circuit Two measure factors: bit error rate (BER) and jitter.

Decoding and Filtering

1/23/2015

DCE (ECE), GURGAON

3.8 Noise consideration in PCM systems

(Channel noise, quantization noise)

(will be discussed in Chapter 4)

1/23/2015

E _b /N ₀	Probability of Error P _e	For a Bit Rate of 10 ⁵ b/s, This Is About One Error Every
4.3 dB	10^{-2}	10^{-3} second
8.4	10^{-4}	10^{-1} second
10.6	10 ⁻⁶	10 seconds
12.0	10^{-8}	20 minutes
13.0	10^{-10}	1 day
14.0	10^{-12}	3 months

Time-Division Multiplexing

Figure 3.19 Block diagram of TDM system.

Synchronization

3.10 Digital Multiplexers

3.11 Virtues, Limitations and Modifications of PCM

Advantages of PCM

- 1. Robustness to noise and interference
- 2. Efficient regeneration
- 3. Efficient SNR and bandwidth trade-off
- 4. Uniform format
- 5. Ease add and drop

6. Secure