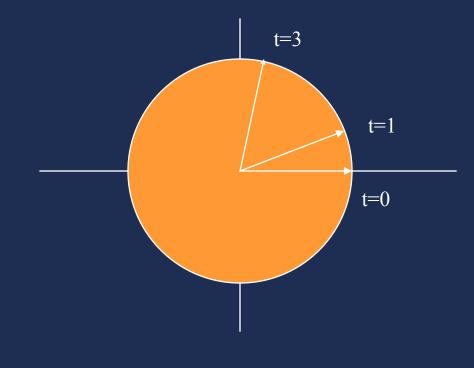
ANGLE MODULATION

ECE, DCE - GURGAON

What is Angle Modulation?


- In angle modulation, information is embedded in the *angle* of the carrier.
- We define the angle of a modulated carrier by the argument of...

$$s(t) = A_c \cos(\theta(t))$$

Phasor Form

In the complex plane we have

Phasor rotates with nonuniform speed

Angular Velocity

 Since phase changes nonuniformly vs. time, we can define a rate of change

$$\omega_i = \frac{d\theta_i(t)}{dt}$$

This is what we know as frequency

$$s(t) = A_c \cos\left(\underbrace{2\pi f_c t + \phi_c}_{\theta_i(t)}\right) \Rightarrow \frac{d\theta_i}{dt} = 2\pi f_c$$

Instantaneous Frequency

- We are used to signals with constant carrier frequency. There are cases where carrier frequency itself changes with time.
- We can therefor talk about *instantaneous* frequency defined as

$$f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$

Examples of Inst. Freq.

Consider an AM signal

$$s(t) = [1 + km(t)] \cos\left(\underbrace{2\pi f_c t + \phi_c}_{\theta_i(t)}\right) \Rightarrow \frac{d\theta_i}{dt} = 2\pi f_c$$

 Here, the instantaneous frequency is the frequency itself, which is constant

Impressing a message on the angle of carrier

• There are two ways to form a an angle modulated signal.

Embed it in the phase of the carrier

Phase Modulation(PM)

- Embed it in the frequency of the carrier

Frequency Modulation(FM)

Phase Modulation(PM)

In PM, carrier angle changes linearly with the message

$$s(t) = A_c \cos(\theta_i(t)) = A_c \cos(2\pi f_c t + k_p m(t))$$

• Where

 $-2\pi f_c$ =angle of unmodulated carrier

k_p=phase sensitivity in radians/volt

Frequency Modulation

 In FM, it is the instantaneous frequency that varies linearly with message amplitude, i.e.

$f_i(t)=f_c+k_fm(t)$

FM Signal

• We saw that I.F. is the derivative of the phase $\frac{1}{2} \frac{d\theta(t)}{d\theta(t)}$

$$f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$

Therefore,

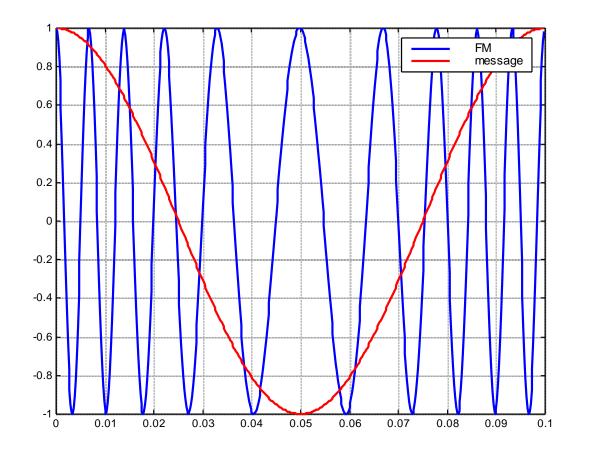
$$\theta_i(t) = 2\pi f_c t + 2\pi k_f \int_0^t m(t)$$

$$s(t) = A_c \cos \left[2\pi f_c t + 2\pi k_f \int_0^t m(t) dt \right]$$

FM for Tone Signals

Consider a sinusoidal message *n*

$$m(t) = A_m \cos(2\pi f_m t)$$


 The instantaneous frequency corresponding to its FM version is

$$f_{i}(t) = f_{c} + k_{f}m(t)$$

$$= \underbrace{f_{c}}_{f_{c}} + k_{f}A_{m}\cos(2\pi f_{m}t)$$
resting frequency

Illustrating FM

Inst.frequency Moves with the Message amplitude

ECE, DCE - GURGAON

Frequency Deviation

Inst. frequency has upper and lower bounds given by

$$f_{i}(t) = f_{c} + \Delta f \cos(2\pi f_{m}t)$$
where
$$\Delta f = frequency \, deviation = k_{f}A_{m}$$
then
$$f_{i}|_{\max} = f_{c} + \Delta f$$

$$f_{i}|_{\min} = f_{c} - \Delta f$$

FM Modulation index

 The equivalent of AM modulation index is β which is also called *deviation ratio*. It quantifies how much carrier frequency swings relative to message bandwidth

$$\beta = \frac{\Delta f}{\underbrace{W}_{baseband}} or \frac{\Delta f}{\underbrace{f}_{m}_{tone}}$$

Example:carrier swing

 A 100 MHz FM carrier is modulated by an audio tone causing 20 KHz frequency deviation. Determine the carrier siwng and highest and lowest carrier frequencies

> $\Delta f = 20 \text{ KHz}$ frequency swing = $2\Delta f = 40 \text{ KHz}$ frequency range : $f_{high} = 100 \text{ MHz} + 20 \text{ KHz} = 100.02 \text{ MHz}$ $f_{low} = 100 \text{ MHz} - 20 \text{ KHz} = 99.98 \text{ MHz}$

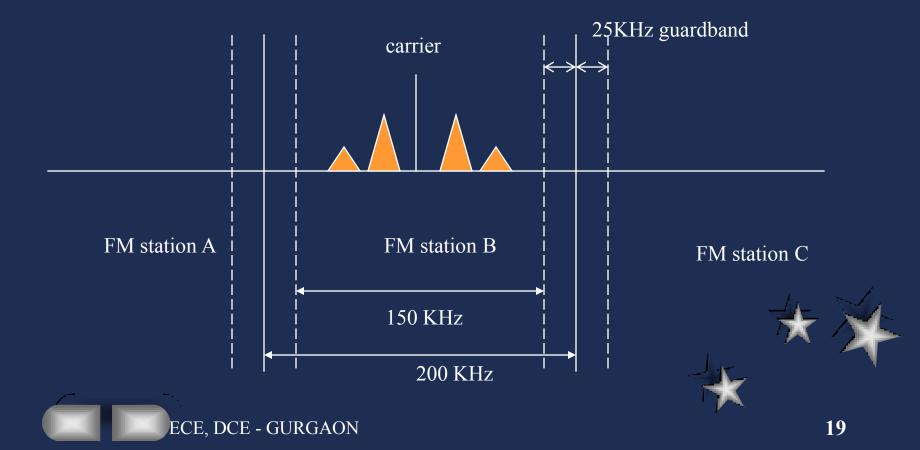
Example: deviation ratio

 What is the modulation index (or deviation ratio) of an FM signal with carrier swing of 150 KHz when the modulating signal is 15 KHz?

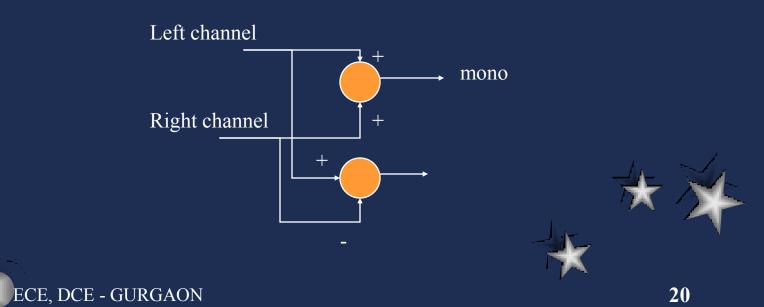
$$\Delta f = \frac{150}{2} = 75 KHz$$
$$\beta = \frac{\Delta f}{f_m} = \frac{75}{15} = 5$$

Myth of FM

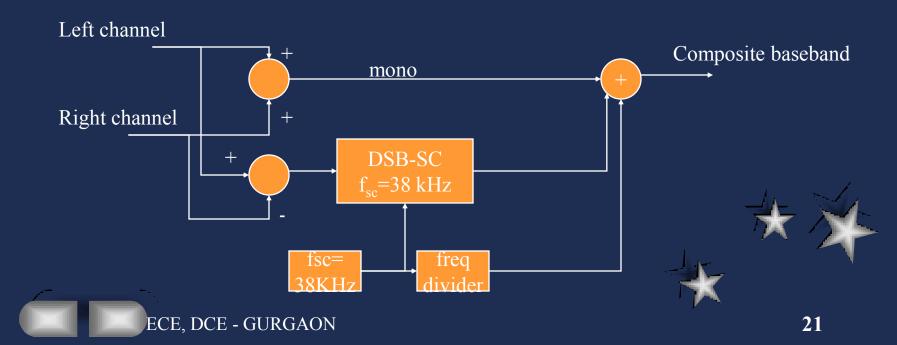
- Deriving FM bandwidth is a lot more involved than AM
- FM was initially thought to be a bandwidth efficient communication because it was thought that FM bandwidth is simply 2∆f
- By keeping frequency deviation low, we can use arbitrary small bandwidth


FM bandwidth

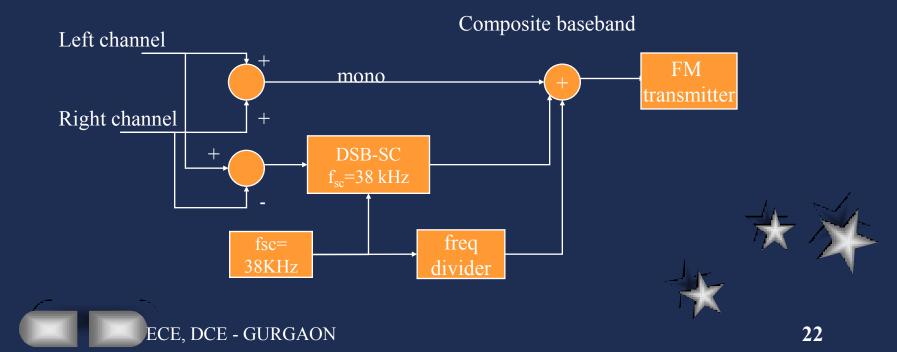
- Deriving FM bandwidth is a lot more involved than AM and it can barely be derived for sinusoidal message
- There is a graphical way to illustrate FM bandwidth


Commercial FM spectrum

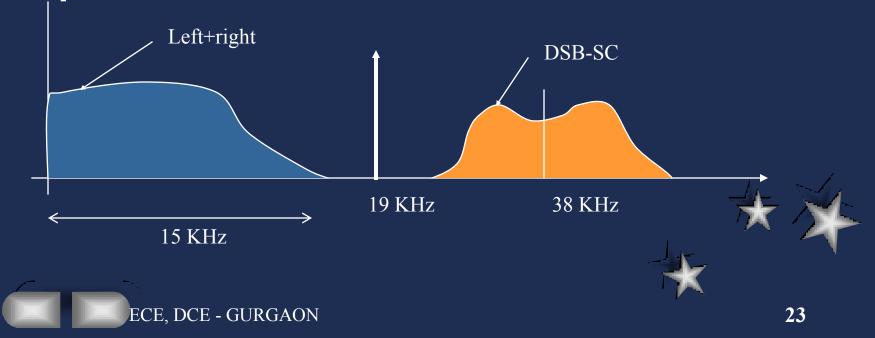
• The FM landscape looks like this


FM stereo:multiplexing

- First, two channels are created; (left+right) and (left-right)
- Left+right is useable by monaural receivers

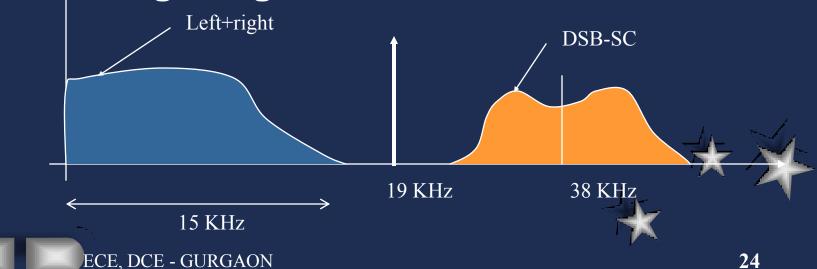

Subcarrier modulation

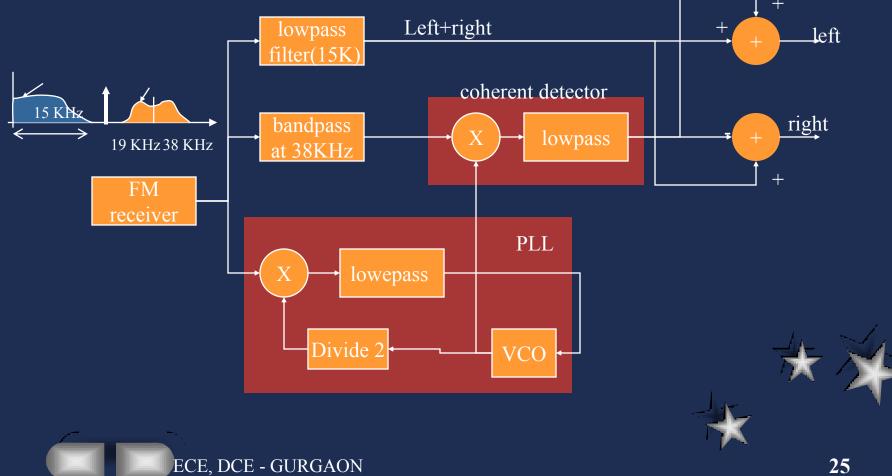
The mono signal is left alone but the difference channel is amplitude modulated with a 38 KHz carrier


Stereo signal

Composite baseband signal is then frequency modulated

Stereo spectrum

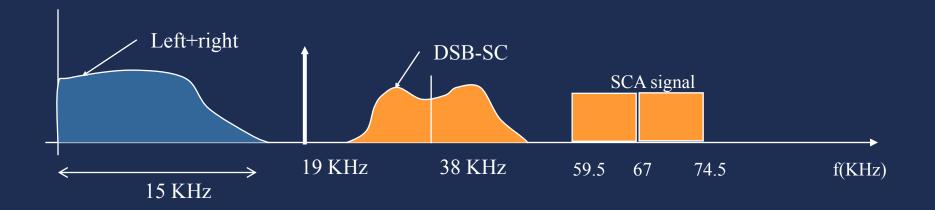

 Baseband spectrum holds all the information. It consists of composite baseband, pilot tone and DSB-SC spectrum


Stereo receiver

First, FM is stripped, i.e. demodulated

 Second, composite baseband is lowpass filtered to recover the left+right and in parallel amplitude demodulated to recover the left-right signal

Receiver diagram


25

Subsidiary communication authorization(SCA)

- It is possible to transmit "special programming", e.g. commercial-free music for banks, department stores etc. embedded in the regular FM programming
- Such programming is frequency multiplexed on the FM signal with a 67 KHz carrier and ±7.5 KHz deviation

SCA spectrum

