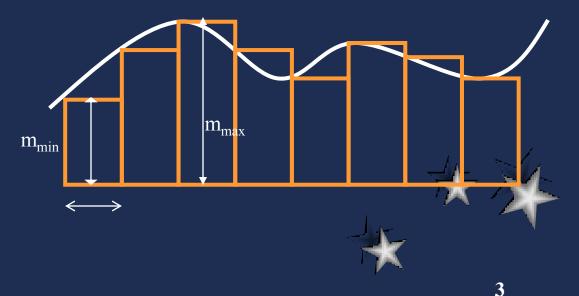

Piece-wise approximation of baseband

Look at the following representation

Corresponding FM signal

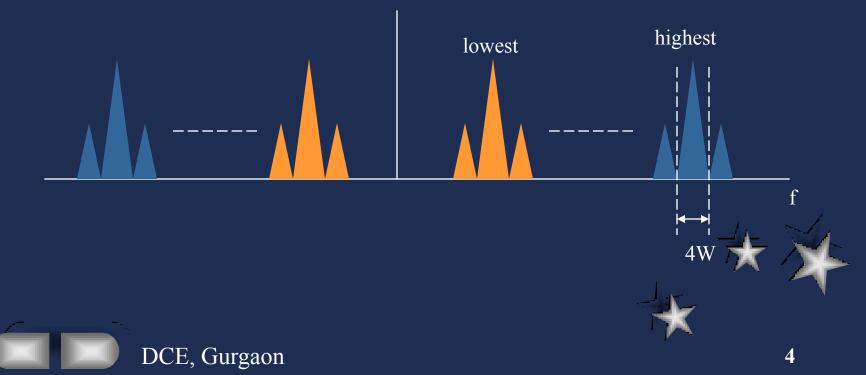
- FM version of the above is an RF pulse for each square pulse.
- The frequency of the kth RF pulse at t=t_k is given by the height of the pulse. i.e.

$$f_i = f_c + k_f m(t_k)$$



Range of frequencies?

- We have a bunch of RF pulses each at a different frequency.
- Inst.freq corresponding to square pulses lie in the following range


$$f_i|_{\max} = f_c + k_f m_{\max}$$
$$f_i|_{\min} = f_c + k_f m_{\min}$$

DCE, Gurgaon

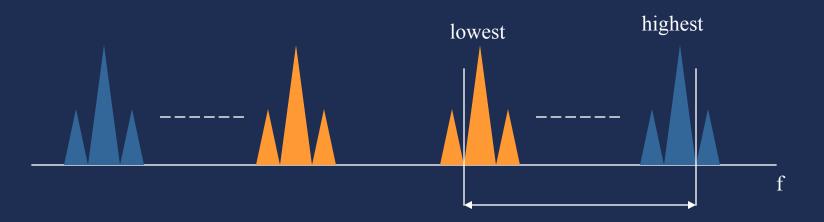
A look at the spectrum

 We will have a series of RF pulses each at a different frequency. The collective spectrum is a bunch of sincs

So what is the bandwidth?

Measure the width from the first upper zero crossing of the highest term to the first lower zero crossing of the lowest term

Closer look


The highest sinc is located at f_c+k_fm_p
 Each sinc is 1/2W wide. Therefore, their zero crossing point is always 2W above the center of the sinc.

2W

6

Range of frequenices

7

Above range lies <f_c-k_fm_p-2W,f_c+k_fm_p+2W>

FM bandwidth

• The range just defined is one expression for FM bandwidth. There are many more!

$$\begin{split} & B_{FM} = 4W + 2k_f m_p \\ & \bullet \ Using \ \beta = & f/W \ with \ & \Delta f = k_f m_p \\ & B_{FM} = 2(\beta + 2)W \end{split}$$

Carson's Rule

 A popular expression for FM bandwidth is Carson's rule. It is a bit smaller than what we just saw

B_{FM}=2(β+1)W

Commercial FM

 Commercial FM broadcasting uses the following parameters

- Baseband;15KHz
- Deviation ratio:5
- Peak freq. Deviation=75KHz

 $B_{FM} = 2(\beta + 1)W = 2x6x15 = 180KHz$

Wideband vs. narrowband FM

NBFM is defined by the condition

 Δf<<W
 B_{FM}=2W
 This is just like AM. No advantage here

 WBFM is defined by the condition

 Δf>>W
 B_{FM}=2 Δf
 This is what we have for a true FM signal

Boundary between narrowband and wideband FM

• This distinction is controlled by $\boldsymbol{\beta}$

- If β>1 --> WBFM
- If β<1-->NBFM

 Needless to say there is no point for going with NBFM because the signal looks and sounds more like AM

