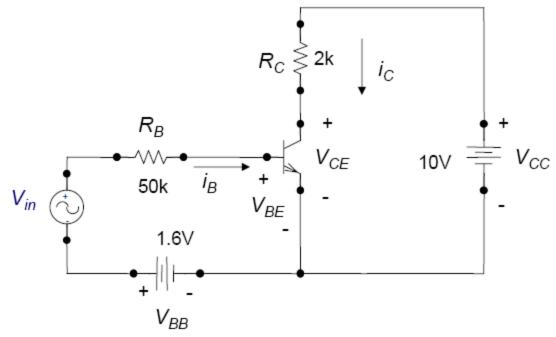
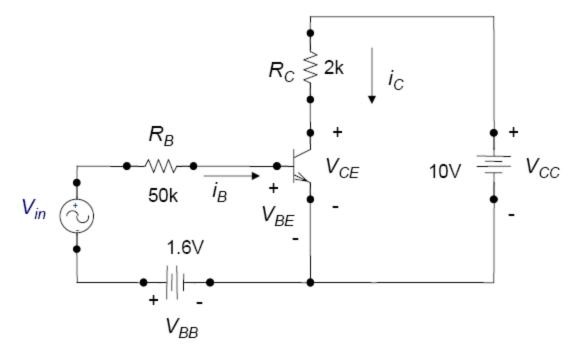

Lecture 17


BJT

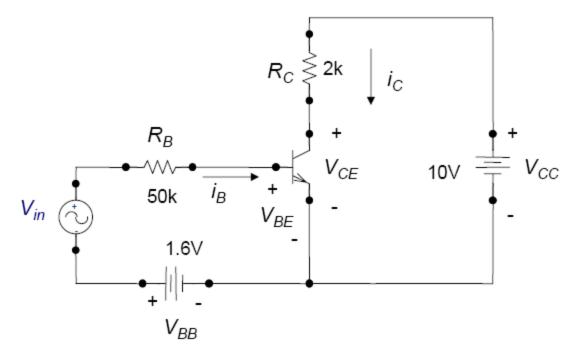
BJT Analysis

- Here is a common emitter BJT amplifier:
- What are the steps?



Input & Output

- We would want to know the collector current (i_c) , collectoremitter voltage (V_{CE}) , and the voltage across *RC*.
- To get this we need to fine the base current (i_B) and the baseemitter voltage (V_{BE}) .


Input Equation

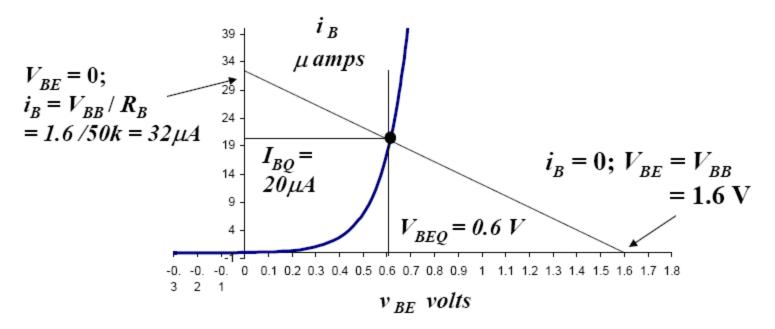
• To start, let's write Kirchoff's voltage law (KVL) around the base circuit.

$$V_{in}(t) + V_{BB} = i_B(t)R_B + V_{BE}(t)$$

Output Equation

Likewise, we can write KVL around the collector circuit.

$$V_{CC} = i_C(t)R_C + V_{CE}(t)$$


Use Superposition: DC & AC sources

- Note that both equations are written so as to calculate the transistor parameters (i.e., base current, base-emitter voltage, collector current, and the collector-emitter voltage) for both the DC signal and the AC signal sources.
- Use superposition, calculate the parameters for each separately, and add up the results:
 - First, the DC analysis to calculate the DC Q-point
 - Short Circuit any AC voltage sources
 - Open Circuit any AC current sources
 - Next, the AC analysis to calculate gains of the amplifier.
 - Depends on how we perform AC analysis
 - Graphical Method
 - Equivalent circuit method for small AC signals

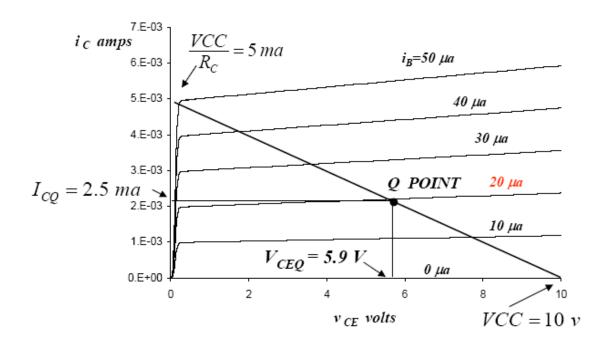
BJT - DC Analysis

- Using KVL for the input and output circuits and the transistor characteristics, the following steps apply:
 - 1. Draw the load lines on the transistor characteristics
 - 2. For the input characteristics determine the Q point for the input circuit from the intersection of the load line and the characteristic curve (Note that some transistor do not need an input characteristic curve.)
 - 3. From the output characteristics, find the intersection of the load line and characteristic curve determined from the Q point found in step 2, determine the Q point for the output circuit.

Base-Emitter Circuit Q point

First let's set $V_{in}(t) = 0$ to get the Q-point for the BJT.

We start with the base circuit.


 $V_{BB} = i_B R_B + V_{BE}$

And the intercepts occur at $i_B = 0$; $V_{BE} = V_{BB} = 1.6$ V

and at $V_{BE} = 0$; $i_B = V_{BB} / R_B = 1.6 / 50k = 32 \mu A$

The Load Line intersects the Base-emitter characteristics at $V_{BEQ} = 0.6 V$ and I_{BQ} = 20 μA

Collector-Emitter Circuit Q point

Now that we have the Q-point for the base circuit, let's proceed to the collector circuit.

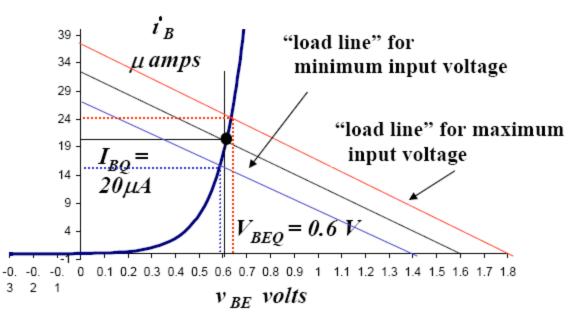
$$V_{CC} = i_C \mathbf{R}_C + V_{CE}$$

The intercepts occur at $i_c = 0$; $V_{CE} = V_{CC} = 10$ V; and at $V_{CE} = 0$; $i_c = V_{CC} / R_c = 10 / 2k = 5mA$

The Load Line intersects the Collector-emitter characteristic, $i_B = 20 \ \mu$ A at $V_{CEQ} = 5.9 \ V$ and $I_{CQ} = 2.5 m$ A, then $\beta = 2.5 m/20 \ \mu = 125$

BJT DC Analysis - Summary

- Calculating the Q-point for BJT is the first step in analyzing the circuit
- To summarize:
 - We ignored the AC (variable) source
 - Short circuit the voltage sources
 - Open Circuit the current sources
 - We applied KVL to the base-emitter circuit and using load line analysis on the base-emitter characteristics, we obtained the base current Qpoint
 - We then applied KVL to the collector-emitter circuit and using load line analysis on the collector-emitter characteristics, we obtained the collector current and voltage Q-point
- This process is also called DC Analysis
- We now proceed to perform AC Analysis


BJT - AC Analysis

- How do we handle the variable source $V_{in}(t)$?
- When the variations of V_{in}(t) are large we will use the base-emitter and collector-emitter characteristics using a similar graphical technique as we did for obtaining the Q-point.
- When the variations of V_{in}(t) are small we will shortly use a linear approach using the BJT small signal equivalent circuit.

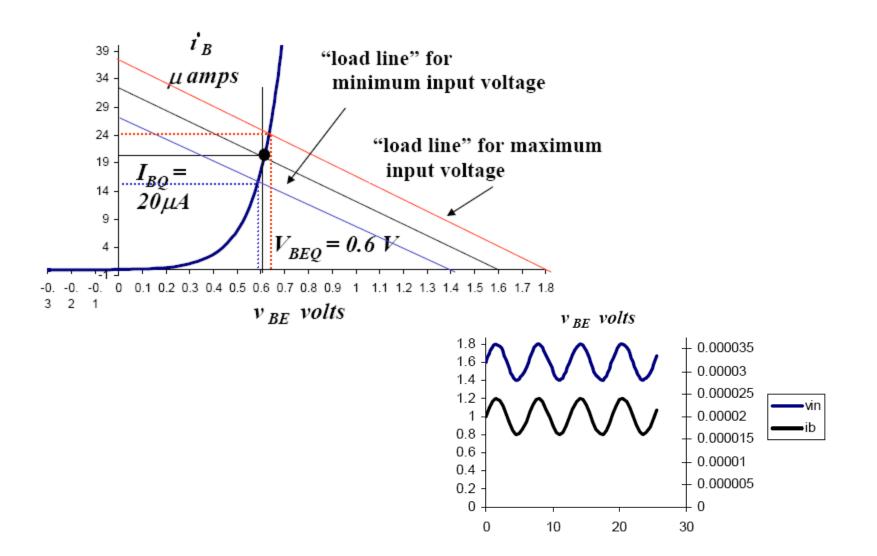
BJT - AC Analysis

- Let's assume that $V_{in}(t) = 0.2 \sin(\omega t)$.
- Then the voltage sources at the base vary from a maximum of 1.6 + 0.2 = 1.8 V to a minimum of 1.6 -0.2 = 1.4 V
- We can then draw two "load lines" corresponding the maximum and minimum values of the input sources
- The current intercepts then become for the:
 - Maximum value: 1.8 / 50k = 36 μ A
 - Minimum value: 1.4 / 50k = 28 μ A

AC Analysis Base-Emitter Circuit

From this graph, we find:

At Maximum Input Voltage:


V_{BE} = 0.63 V, *i_B* = 24 μA

At Minimum Input Voltage:

 $V_{BE} = 0.59 \text{ V}, i_B = 15 \text{ }\mu\text{A}$ Recall: At Q-point: $V_{BE} = 0.6 \text{ V}, i_B = 20 \text{ }\mu\text{A}$ Note the asymmetry around the Q-point of the Max and Min Values for the base current and voltage which is due to the non-linearity of the base-emitter characteristics

> $\Delta i_{Bmax} = 24-20 = 4 \ \mu A;$ $\Delta i_{Bmin} = 20-15 = 5 \ \mu A$

AC Analysis Base-Emitter Circuit

