Lecture 14

## Small-Signal Equivalent Circuit for FETs

Output signal from an amplifier using FET can be effectively modulated by small changes of input signal current. In this way it is possible to make small changes from the $Q$ point.

Symbols:
The total quantities: $i_{D}(\dagger), v_{G S}(\dagger)$
The dc point values: $I_{D Q}, V_{G S Q}$
The signal $i_{d}(\dagger), v_{g s}(\dagger)$

$$
\begin{aligned}
& v_{G S}(t)=V_{G S Q}+v_{g s}(t) \\
& i_{D}(t)=I_{D Q}+i_{d}(t)
\end{aligned}
$$



Figure 12.18 Illustration of the terms in Equation 12.15.

## Small-Signal Equivalent Circuit -Transconductance



Figure 12.10 Simple NMOS amplifier circuit.

$$
I_{D Q}+i_{d}(t)=K\left(V_{G S Q}-V_{t 0}\right)^{2}+2 K\left(V_{G S Q}-V_{t 0}\right) v_{g s}(t)+K v_{g s}^{2}(t)
$$

We know that $\quad I_{D Q}=K\left(V_{G S Q}-V_{t 0}\right)^{2}$ *
Also we assume that $\quad\left|v_{g s}(t)\right| \ll\left|\left(V_{G S Q}-V_{t 0}\right)\right|$

## Small-Signal Equivalent Circuit -Transconductance



$$
I_{D Q}+i_{d}(t)=K\left(V_{G S Q}-V_{t 0}\right)^{2}+2 K\left(V_{G S Q}-V_{t 0}\right) \nu_{g s}(t)+K \nu_{g s}^{2}(t)
$$

We know that $\quad I_{D Q}=K\left(V_{G S Q}-V_{t 0}\right)^{2}$ *
Also we assume that $\quad\left|v_{s s}(t)\right| \ll\left|\left(V_{\text {Gse }}-V_{t 0}\right)\right|$
Drain current generated $\Longleftrightarrow i_{d}(t)=2 K\left(V_{G S Q}-V_{t 0}\right) v_{g s}(t)$ by signal

## Small-Signal Equivalent Circuit -Transconductance



Figure 12.10 Simple NMOS amplifier circuit.

We define the transconductance as

$$
\begin{aligned}
& g_{m}=\frac{i_{d}(t)}{v_{g s}(t)} \\
& \text { or } \\
& i_{d}(t)=g_{m} v_{g s}(t)
\end{aligned}
$$

so

$$
g_{m}=2 K\left(V_{G S Q}-V_{t 0}\right)
$$

## Small-Signal Equivalent Circuit -Transconductance



Thus the
transconductance

$$
g_{m}=2 K\left(V_{G S Q}-V_{t 0}\right)=2 \sqrt{K I_{D Q}}
$$

## Small-Signal Equivalent Circuit -Transconductance

## Exercise

The transistor has $K P=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{\text {to }}=2 \mathrm{~V}, L=10 \mu \mathrm{~m}$, and $\mathrm{W}=400 \mu \mathrm{~m}$


Figure 12.10 Simple NMOS amplifier circuit.

## Small-Signal Equivalent Circuit

Also we assume that $\quad i_{g}(t)=0$


$$
\begin{aligned}
g_{m} & =2 \sqrt{K I_{D Q}} \\
K & =\left(\frac{W}{L}\right) \frac{K P}{2}
\end{aligned}
$$

Figure 12.19 Small-signal equivalent circuit for FETs.
Better performance is obtained with higher values of $g_{m}$. Please notice that $g_{m}$ is proportional to the square root of the $Q$ point drain current. Simply, we can increase $g_{m}$ by choosing a higher value of $I_{D Q}$.

## More Complex Equivalent Circuits

For more accurate analyses of FET transistor we have to add more components to an equivalent circuit. Small capacitance: for high response FET amplifiers Drain resistor: account for the effect of $v_{D S}$ on the drain current


Correction for $i_{d}$

$$
i_{d}(t)=g_{m} v_{g s}(t)+v_{d s} / r_{d}
$$

Figure 12.20 FET small-signal equivalent circuit that accounts for the dependence of $i_{D}$ on $v_{D S}$.

Please read section: Transconductance and ... pp. 591 Example 12.3

