ANALOG ELECTRONICS

LECTURE NO. 9

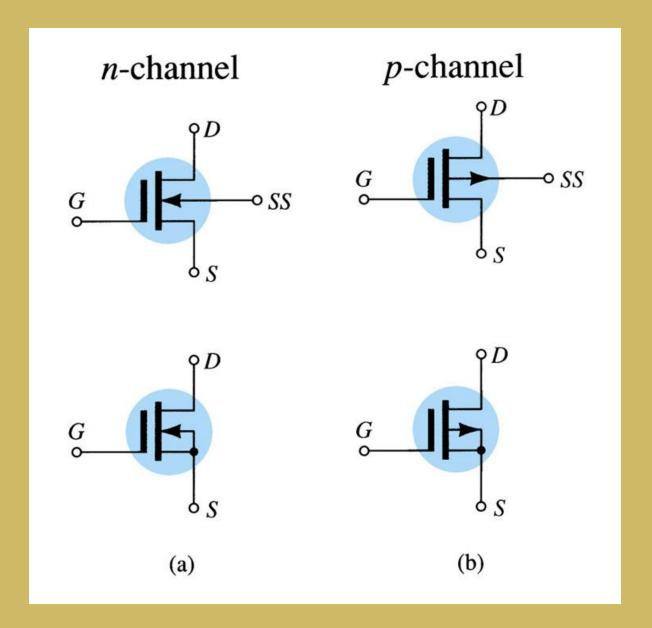
MOSFET'S

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful

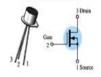
There are 2 types of MOSFET's:

- Depletion mode MOSFET (D-MOSFET)
 - Operates in Depletion mode the same way as a JFET when $V_{GS} \le 0$
 - Operates in Enhancement mode like E-MOSFET when V_{GS} > 0
- Enhancement Mode MOSFET (E-MOSFET)
 - Operates in Enhancement mode
 - IDSS = 0 until VGS > VT (threshold voltage)


MOSFET Handling

MOSFETs are very static sensitive. Because of the very thin SiO₂ layer between the external terminals and the layers of the device, any small electrical discharge can stablish an unwanted conduction.

Protection:


- Always transport in a static sensitive bag
- Always wear a static strap when handling MOSFETS
- Apply voltage limiting devices between the Gate and Source, such as back-to-back Zeners to limit any transient voltage

D-MOSFET Symbols

2N3797

CASE 22-03, STYLE 2 TO-18 (TO-206AA)

MOSFETS LOW POWER AUDIO

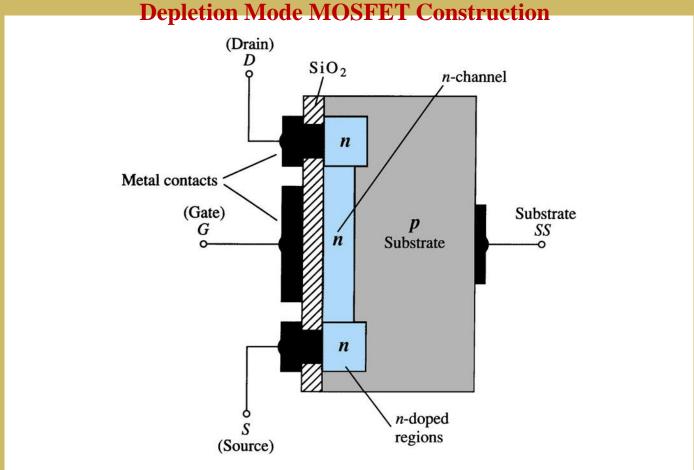
N-CHANNEL - DEPLETION

3.8

dB

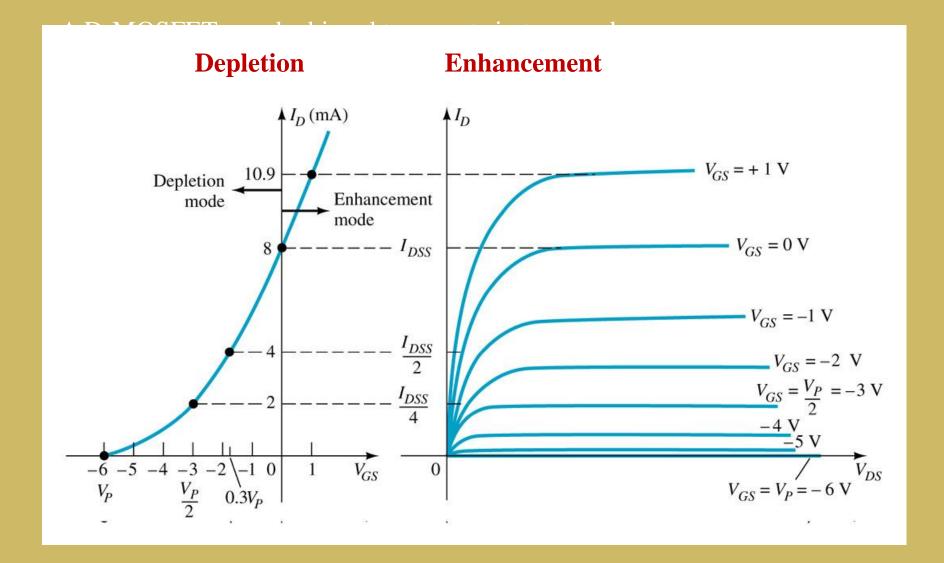
MAXIMUM RATINGS

Rating	Symbol	Value	Vdc Vdc		
Drain-Source Voltage 2N3797	V _{DS}	20			
Gate-Source Voltage	V _{GS}	±10			
Drain Current	I _D	20	mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	200 1.14	mW/C		
Junction Temperature Range	Tj	+175	,C		
Storage Channel Temperature Range	T _{seg}	-65 to +200	·c		

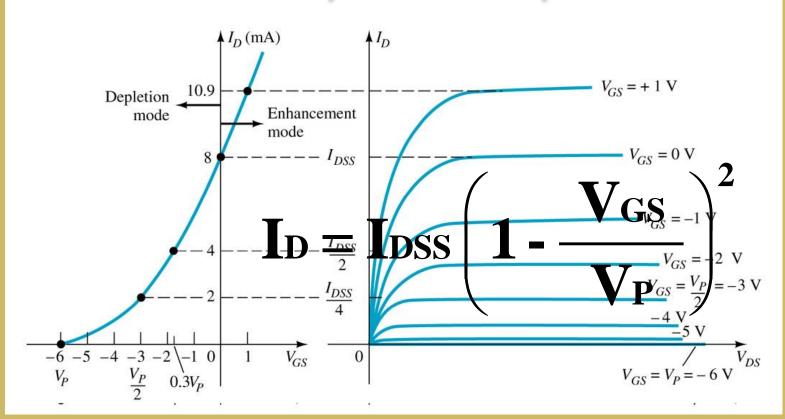

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain Source Breakdown Voltage $(V_{GS} = -7.0 \text{ V}, I_D = 5.0 \mu\text{A})$	2N3797	V _{(BR)DSX}	20	25		Vdc
Gate Reverse Current (1) $(V_{CS} = -10 \text{ V}, V_{DS} = 0)$ $(V_{CS} = -10 \text{ V}, V_{DS} = 0, T_A = 150^{\circ}\text{C})$		l _{oss}	10.86	-	1.0 200	pAdo
Gate Source Cutoff Voltage (I _D = 2.0 µA, V _{DS} = 10 V)	2N3797	V _{GS(eff)}	-	-5.0	-7.0	Vdc
Drain-Gate Reverse Current (1) $(V_{DG} = 10 \text{ V}, I_S = 0)$		I _{pco}	10		1.0	pAdo
ON CHARACTERISTICS					N -	h
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0)$	2N3797	I _{DSS}	2.0	2.9	6.0	mAd
On-State Drain Current (V _{DS} = 10 V, V _{GS} = +3.5 V)	2N3797	I _{Dint}	9.0	14	18	mAd
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance (V _{DS} = 10 V, V _{GS} = 0, f = 1.0 kHz)	2N3797	y _{fs}	1500	2300	3000	μmhe
$(V_{DS}$ = 10 V, V_{GS} = 0, f = 1.0 MHz)	2N3797		1500	2	V.	
Output Admittance $(I_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N3797	Ym		27	60	μmbo
Input Capacitance ($V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	2N3797	Cina	4	6.0	8.0	pF
Reverse Transfer Capacitance (V _{DS} = 10 V, V _{OS} = 0, f = 1.0 MHz)		Cns	-	0.5	0.8	pF

(1) This value of current includes both the FET leakage current as well as the leakage current associated with the test socket and fixture when measured under best attainable conditions.


FUNCTIONAL CHARACTERISTICS

 $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}, R_S = 3 \text{ megohms})$



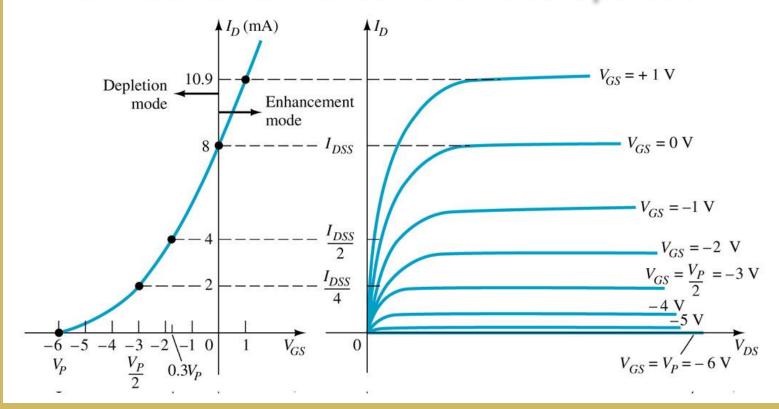
The Drain (D) and Source (S) leads connect to the to n-doped regions
These N-doped regions are connected via an n-channel
This n-channel is connected to the Gate (G) via a thin insulating layer of SiO₂
The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS

Basic Operation

D-MOSFET Depletion Mode Operation

The transfer characteristics are similar to the JFET

In Depletion Mode operation:

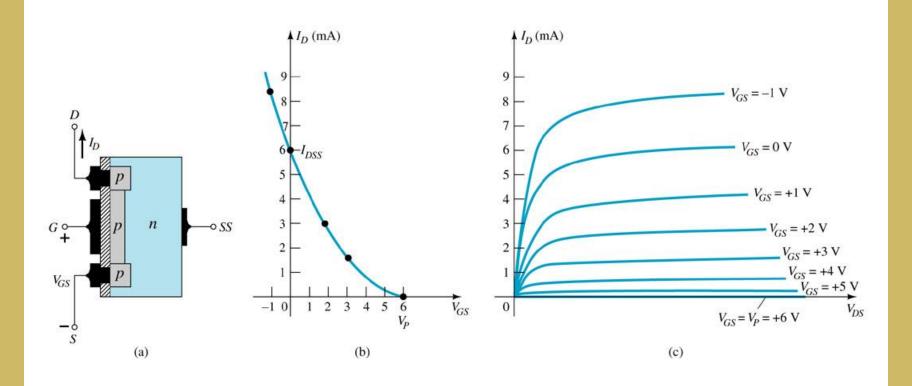

When $V_{GS} = 0V$, $I_D = I_{DSS}$

When $V_{GS} < 0V$, $I_D < I_{DSS}$

When $V_{GS} > 0V$, $I_{D} > I_{DSS}$

The formula used to plot the Transfer Curve, is:

D-MOSFET Enhancement Mode Operation



Enhancement Mode operation

In this mode, the transistor operates with $V_{GS} > 0V$, and I_D increases above I_{DSS} Shockley's equation, the formula used to plot the Transfer Curve, still applies but V_{GS} is positive:

 $\mathbf{I}_{D} = \mathbf{I}_{DSS} \left(1 - \frac{\mathbf{V}_{GS}}{\mathbf{V}_{P}} \right)^{2}$

p-Channel Depletion Mode MOSFET

