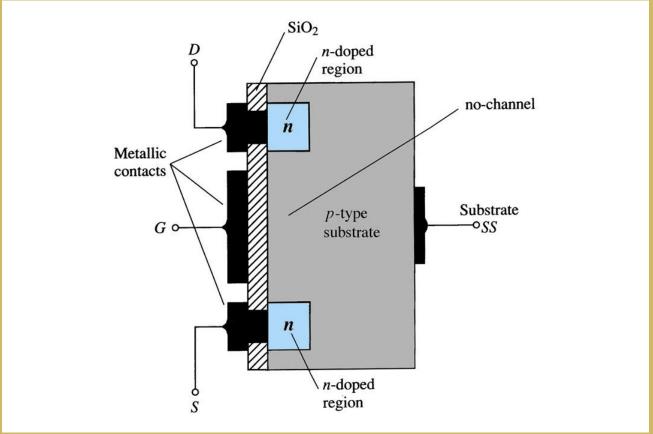

ANALOG ELECTRONICS


LECTURE NO. 10

ENHANCEMENT MODE MOSFET'S

n-Channel E-MOSFET showing channel length L and channel width W

Enhancement Mode MOSFET Construction

The Drain (D) and Source (S) connect to the to n-doped regions
These n-doped regions are not connected via an n-channel without an external voltage

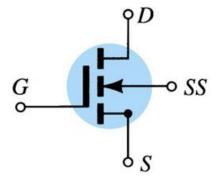
The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO₂ The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS

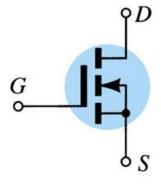
Specification Sheet

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage*	V _{GS}	30	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	300 1.7	mW mW/°C
Junction Temperature Range	Tj	175	°C
Storage Temperature Range	Tag	-65 to +175	°C

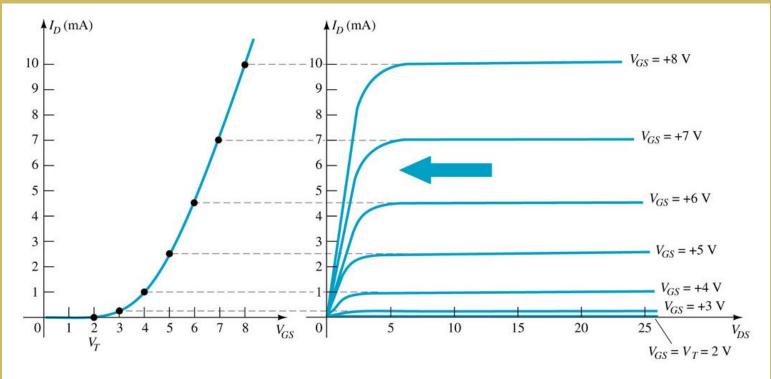
Transient potentials of ± 75 Volt will not cause gate-oxide failure.




	2N4351
CAS	E 20-03, STYLE 2
	-72 (TO-206AF)
	3 Drain 2 Gate 1 Source
4'	MOSFET
S	WITCHING
N-CHANN	EL - ENHANCEMENT

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $(I_D = 10 \mu A, V_{GS} = 0)$		V _{(BR)DSX}	25	-	Vdc
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0) T_A = 25 ^{\circ}\text{C}$ $T_A = 150 ^{\circ}\text{C}$		I _{DSS}	1	10 10	nAdo µAdo
Gate Reverse Current $(V_{GS} = \pm 15 \text{ Vdc}, V_{DS} = 0)$		I _{GSS}	-	± 10	pAdo
ON CHARACTERISTICS					0.1
Gate Threshold Voltage $(V_{DS} = 10 \text{ V}, I_{D} = 10 \mu\text{A})$		V _{GS(Th)}	1.0	5	Vdc
Drain-Source On-Voltage (I _D = 2.0 mA, V _{GS} = 10V)	V _{DS(on)}	-	1.0	v	
On-State Drain Current (V _{GS} = 10 V, V _{DS} = 10 V)		I _{D(on)}	3.0		mAdo
SMALL-SIGNAL CHARACTER	RISTICS				
Forward Transfer Admittance (V _{DS} = 10 V, I _D = 2.0 mA, f = 1.0 kHz)		y _{fs}	1000	-	μmho
Input Capacitance (V _{DS} = 10 V, V _{GS} = 0, f = 140 kHz)		Cisa		5.0	pF
Reverse Transfer Capacitance $(V_{DS} = 0, V_{GS} = 0, f = 140 \text{ kHz})$		Cns	2	1.3	pF
Drain-Substrate Capacitance (V _{DCSUB)} = 10 V, f = 140 kHz)		$C_{d(sub)}$	-	5.0	pF
Drain-Source Resistance $(V_{GS} = 10 \text{ V}, I_D = 0, f = 1.0 \text{ kHz})$		E _{de(on)}	-	300	ohms
SWITCHING CHARACTERIST	rics	6 5			
Turn-On Delay (Fig. 5)		t _{d1}	-	45	ns
	$I_D = 2.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc},$ $(V_{GS} = 10 \text{ Vdc})$	t _e	-	65	ns
	= 10 Vdc) Figure 9; Times Circuit Determined)	t _{d2}	-	60	ns
Fall Time (Fig. 8)	(See Figure 9, Times Carcuit Determined)	t _f		100	ns

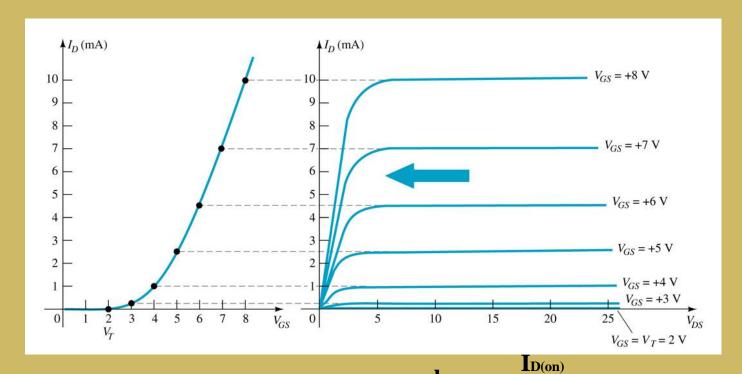
E-MOSFET Symbols


n-channel

Basic Operation

The Enhancement mode MOSFET only operates in the enhancement mode.

VGs is always positive

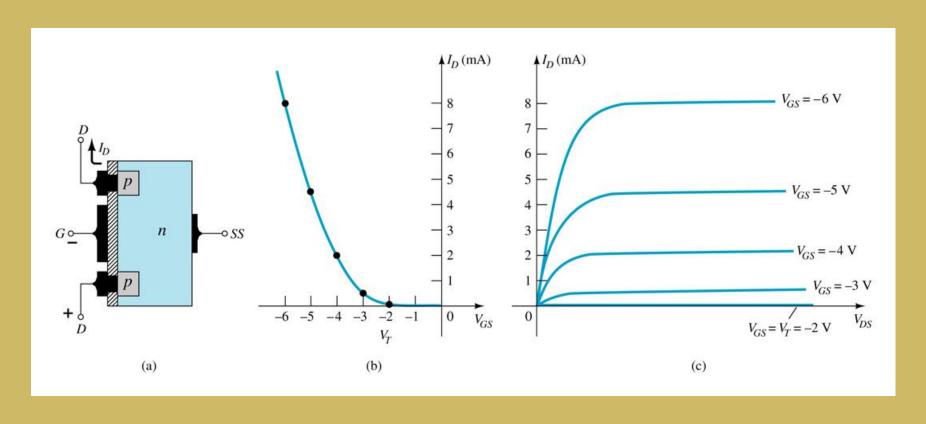

 $I_{DSS} = 0$ when $V_{GS} < V_{T}$

As V_Gs increases above V_T, I_D increases

If VGs is kept constant and VDs is increased, then ID saturates (IDSS)

The saturation level, VDSsat is reached.

Transfer Curve


To determine ID given VGS: $I_D = k (V_{GS} - V_T)^2 \overline{(V_{GS(ON)} - V_T)^2}$ where V_T = threshold voltage or voltage at which the MOSFET turns on. k = constant found in the specification sheet

The PSpice determination of k is based on the geometry of the device:

$$k = \left(\frac{W}{L}\right)\left(\frac{KP}{2}\right)$$
 where $KP = \mu_N Cox$

p-Channel Enhancement Mode MOSFETs

The p-channel Enhancement mode MOSFET is similar to the n-channel except that the voltage polarities and current directions are reversed.

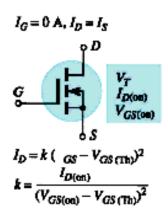
Summary Table

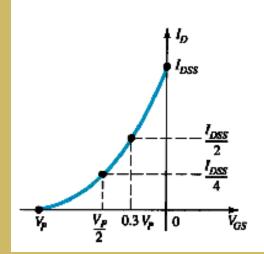
JFET

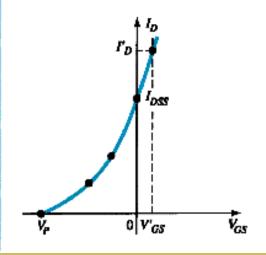
$I_G = 0$ A, $I_D = I_S$ C I_{DSS} V_P

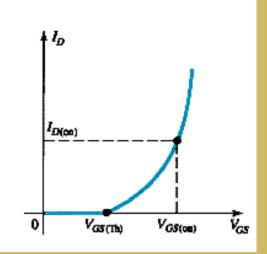
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

D-MOSFET


$$I_{G} = 0 \text{ A, } I_{D} = I_{S}$$


$$G \qquad \qquad I_{DSS}$$


$$V_{P}$$


$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2}$$

E-MOSFET

