ELECTRONICS DEVICES AND CIRCUITS

SECTION - C

TRANSISTORS

BJT

CE Configuration

Common-Emitter Configuration

- It is called common-emitter configuration since :
 - emitter is common or reference to both input and output terminals.
 - emitter is usually the terminal closest to or at ground

potential.

- Almost amplifier design is using connection of CE due to the high gain for current and voltage.
- Two set of characteristics are necessary to describe the behavior for CE ;input (base terminal) and output (collector terminal) parameters.

Proper Biasing common-emitter configuration in active region

Input characteristics for a common-emitter NPN transistor

- I_B is microamperes compared to miliamperes of I_C.
- I_B will flow when $V_{BE} > 0.7V$

for silicon and 0.3V for germanium

- Before this value I_B is very small and no I_B .
- Base-emitter junction is forward bias
- Increasing V_{CE} will reduce I_B for different values.

- For small V_{CE} (V_{CE} < V_{CESAT}, I_C increase linearly with increasing of V_{CE}
- $V_{CE} > V_{CESAT} I_C$ not totally depends on $V_{CE} \rightarrow$ constant I_C
- $I_B(uA)$ is very small compare to I_C (mA). Small increase in I_B cause big increase in I_C
- $I_B = 0 A \rightarrow I_{CEO}$ occur.
- Noticing the value when $I_C = 0A$. There is still some value of current flows.

Active region	Saturation region	Cut-off region
 B-E junction is forward bias C-B junction is reverse bias can be employed for voltage, current and power amplification 	 B-E and C-B junction is forward bias, thus the values of I_B and I_C is too big. The value of V_{CE} is so small. Suitable region when the transistor as a logic switch. NOT and avoid this region when the transistor as an amplifier. 	 region below I_B=0µA is to be avoided if an undistorted o/p signal is required B-E junction and C-B junction is reverse bias I_B=0, I_C not zero, during this condition I_C=I_{CEO} where is this current flow when B-E is reverse bias.
		$G = 0$ C I_{CEO}

, I_{CEO}

ipn,

E

 $\mathbf{B}_{\underline{J}}$

 $I_B = 0$

 \sim

ė E

Base open

Collector to emitter

Beta (β) or amplification factor

- The ratio of dc collector current (IC) to the dc base current (IB) is dc beta (βdc) which is dc current gain where IC and IB are determined at a particular operating point, Q-point (quiescent point).
- It's define by the following equation:

```
30 < \beta dc < 300 \rightarrow 2N3904
```


• On data sheet, $\beta_{dc} = h_{FE}$ with *h* is derived from ac hybrid equivalent cct. FE are derived from forward-current amplification and common-emitter configuration respectively.

- For ac conditions an ac beta has been defined as the changes of collector current (I_C) compared to the changes of base current (I_B) where I_C and I_B are determined at operating point.
- On data sheet, $\beta_{ac} = h_{fe}$
- It can defined by the following equation:

Relationship analysis between a and β

1

CASE 1

$$I_{E} = I_{C} + I_{B}$$
 (1)
subtitute equ. $I_{C} = \beta I_{B}$ into (1) we get
 $I_{E} = (\beta + 1)I_{B}$

CASE 2
known :
$$\alpha = \frac{I_{c}}{I_{E}} \Rightarrow I_{E} = \frac{I_{c}}{\alpha}$$
 (2)
known : $\beta = \frac{I_{c}}{I_{B}} \Rightarrow I_{B} = \frac{I_{c}}{\beta}$ (3)
subtitute (2) and (3) into (1) we get,
 $\alpha = \frac{\beta}{\beta + 1}$ and $\beta = \frac{\alpha}{1 - \alpha}$