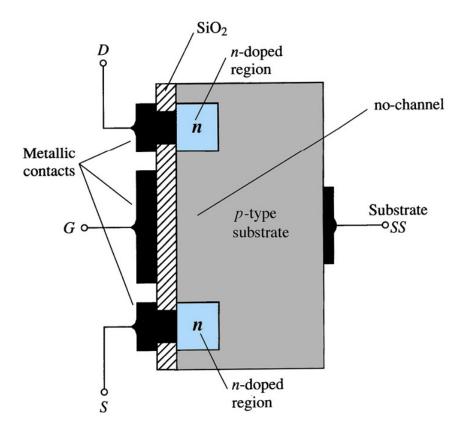

ELECTRONICS DEVICES AND CIRCUITS SECTION - C TRANSISTORS


OBJECTIVE

MOSFETs

n-Channel E-MOSFET showing channel length L and channel width W

Enhancement Mode MOSFET Construction

The Drain (D) and Source (S) connect to the to n-doped regions
These n-doped regions are not connected via an n-channel without an
external voltage

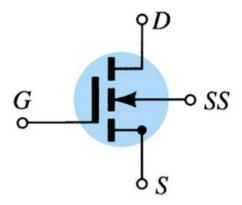
The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO₂

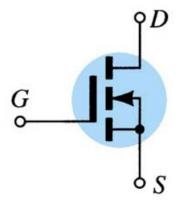
The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS

Specification Sheet

MAXIMUM RATINGS

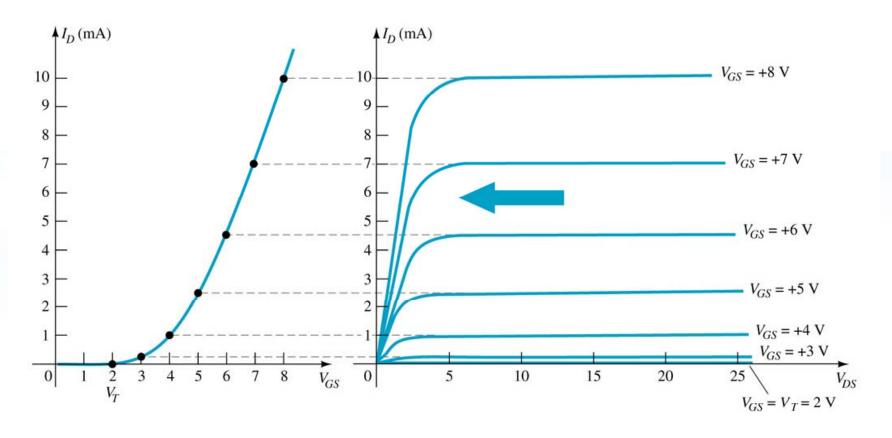
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V_{DG}	30	Vdc
Gate-Source Voltage*	V _{GS}	30	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	300 1.7	mW mW/°C
Junction Temperature Range	Tj	175	*C
Storage Temperature Range	Tstg	-65 to +175	°C


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage $(I_D = 10 \mu A, V_{GS} = 0)$	V _{(BR)DSX}	25	-	Vdc
Zero-Gate-Voltage Drain Current ($V_{DS} = 10 \text{ V}, V_{OS} = 0$) $T_A = 25^{\circ}\text{C}$ $T_A = 150^{\circ}\text{C}$	I _{DSS}	-	10 10	nAdc µAdc
Gate Reverse Current $(V_{GS} = \pm 15 \text{ Vdc}, V_{DS} = 0)$	I _{GSS}		± 10	pAdc
ON CHARACTERISTICS				
Gate Threshold Voltage $(V_{DS} = 10 \text{ V}, I_D = 10 \mu\text{A})$	V _{GS(Th)}	1.0	5	Vdc
Drain-Source On-Voltage ($I_D = 2.0 \text{ mA}, V_{GS} = 10V$)	V _{DS(on)}	-	1.0	v
On-State Drain Current (V _{GS} = 10 V, V _{DS} = 10 V)	I _{D(on)}	3.0	-	mAdo
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance ($V_{DS} = 10 \text{ V}, I_D = 2.0 \text{ mA}, f = 1.0 \text{ kHz}$)	y _{fs}	1000	-	μmho
Input Capacitance $(V_{DS} = 10 \text{ V}, V_{QS} = 0, f = 140 \text{ kHz})$	C _{iss}	-	5.0	pF
Reverse Transfer Capacitance ($V_{DS} = 0$, $V_{OS} = 0$, $f = 140$ kHz)	C _{rss}	1	1.3	pF
Drain-Substrate Capacitance (V _{D(SUB)} = 10 V, f = 140 kHz)	C _{d(sub)}	-	5.0	pF
Drain-Source Resistance ($V_{GS} = 10 \text{ V}, I_D = 0, f = 1.0 \text{ kHz}$)	f _{ds(on)}	-	300	ohms
SWITCHING CHARACTERISTICS				
Turn-On Delay (Fig. 5)	t _{d1}	-	45	ns
Rise Time (Fig. 6) $I_D = 2.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc},$	t _r	-	65	ns
Turn-Off Delay (Fig. 7) (V _{GS} = 10 Vdc) (See Figure 9; Times Circuit Determined)	t _{d2}	-	60	ns
Fall Time (Fig. 8)	tr	_	100	ns

^{*} Transient potentials of ± 75 Volt will not cause gate-exide failure.

E-MOSFET Symbols


n-channel

Basic Operation

The Enhancement mode MOSFET only operates in the enhancement mode.

VGS is always positive


 $I_{DSS} = 0$ when $V_{GS} < V_{T}$

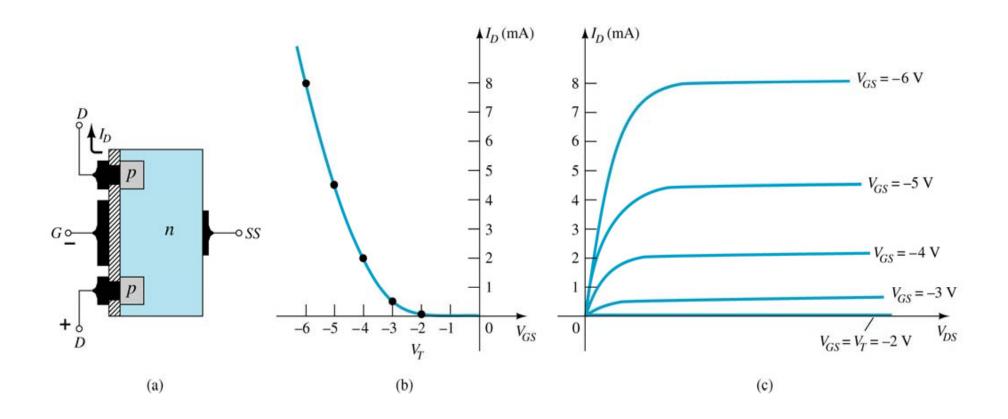
As VGS increases above VT, ID increases

If VGs is kept constant and VDs is increased, then ID saturates (IDSS)

The saturation level, VDSsat is reached.

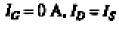
Transfer Curve

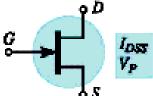
To determine ID given VGS: $I_D = k (V_{GS} - V_T)^2$ where V_T = threshold voltage or voltage at which the MOSFET turns on. k = constant found in the specification sheet


The P-Spice determination of k is based on the geometry of the device: $\mathbf{k} = \mathbf{k}$

$$\mathbf{k} = \left(\frac{\mathbf{W}}{\mathbf{L}}\right) \left(\frac{\mathbf{KP}}{\mathbf{2}}\right)$$

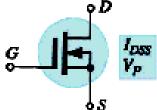
where $KP = \mu_N C_{OX}$


p-Channel Enhancement Mode MOSFETs


The p-channel Enhancement mode MOSFET is similar to the n-channel except that the voltage polarities and current directions are reversed.

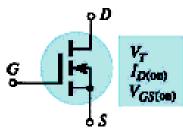
Summary Table

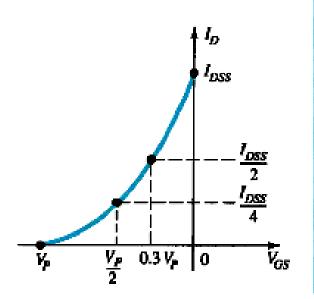
JFET

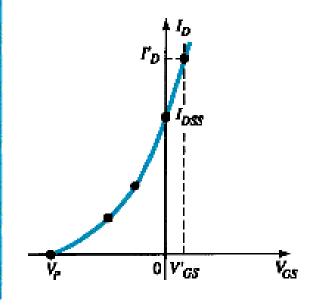


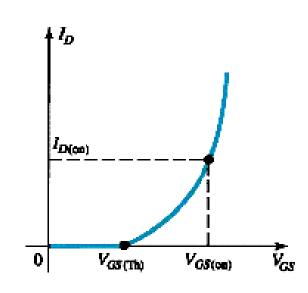
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

D-MOSFET


$$I_G = 0 \text{ A}, I_D = I_S$$


$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$


E-MOSFET


$$I_G = 0$$
 A, $I_D = I_S$

$$I_D = k (\frac{GS - V_{GS \text{ (Th)}})^2}{I_{D(\text{cen})}}$$
$$k = \frac{I_{D(\text{cen})}}{(V_{GS(\text{cen})} - V_{GS \text{ (Th)}})^2}$$

