ELECTRONICS DEVICES AND CIRCUITS

SECTION - B

Semiconductors, Construction & Characteristics of Devices

OBJECTIVE

OPTICAL EXCITATION IN DIODE

PHOTODIODE

Photo Detectors

- Optical receivers convert optical signal (light) to electrical signal (current/voltage)
 - Hence referred 'O/E Converter'
- Photodetector is the fundamental element of optical receiver, followed by amplifiers and signal conditioning circuitry
- There are several photodetector types:
 - Photodiodes, Phototransistors, Photon multipliers, Photo-resistors etc.

Photodetector Requirements

- Good sensitivity (responsivity) at the desired wavelength and poor responsivity elsewhere
 → wavelength selectivity
- Fast response time → high bandwidth
- Compatible physical dimensions
- Low noise
- Insensitive to temperature variations
- Long operating life and reasonable cost

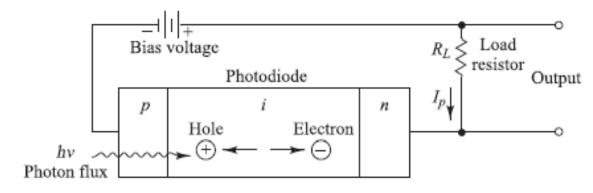
Photodiodes

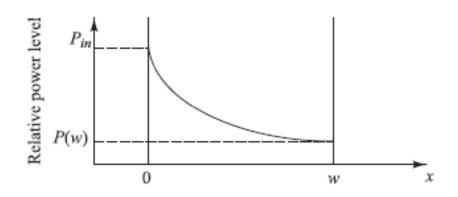
- Due to above requirements, only photodiodes are used as photo detectors in optical communication systems
- Positive-Intrinsic-Negative (pin) photodiode
 - No internal gain
- Avalanche Photo Diode (APD)
 - An internal gain of M due to self multiplication
- Photodiodes are sufficiently reverse biased during normal operation → no current flow, the intrinsic region is fully depleted of carriers

Physical Principles of Photodiodes

 As a photon flux Φ penetrates into a semiconductor, it will be absorbed as it progresses through the material.

• If $\alpha_s(\lambda)$ is the photon absorption coefficient at a wavelength λ , the power level at a distance x into the


material is


$$P(x) = P_{in} \exp(-\alpha_s x)$$

Absorbed photons trigger *photocurrent* I_p in the external circuitry

Photocurrent

Incident Light Power

Examples of Photon Absorption

Example 6.1 If the absorption coefficient of $In_{0.53}Ga_{0.47}As$ is 0.8 μ m⁻¹ at 1550 nm, what is the penetration depth at which $P(x)/P_m = 1/e = 0.368$?

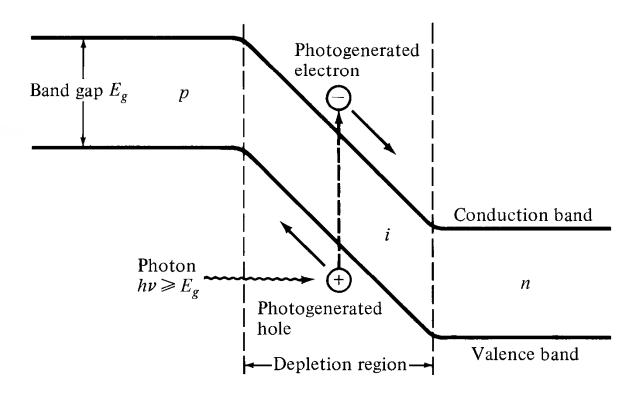
Solution: From Eq. (6.1),

$$\frac{P(x)}{P_{in}} = \exp(-a_{s}x) = \exp[(-0.8)x] = 0.368$$

Therefore

$$-0.8 x = \ln 0.368 = -0.9997$$

which yields $x = 1.25 \mu m$.


Example 6.2 A high-speed $In_{0.53}Ga_{0.47}As\ p_i$ photodetector is made with a depletion layer thickness (0.15 μ m. What percent of incident photons are absorbed: this photodetector at 1310 nm if the absorption coefficies is 1.5 μ m⁻¹ at this wavelength?

Solution: From Eq. (6.1), the optical power level $x = 0.15 \,\mu\text{m}$ relative to the incident power level is

$$\frac{P(0.15)}{P_{in}} = \exp(-a_{s}x) = \exp[(-1.5)0.15] = 0.80$$

Therefore only 20 percent of the incident photons as absorbed.

pin energy-band diagram

$$\lambda_c = \frac{hc}{E_g} = \frac{1.24}{E_g(eV)} \text{ } \mu\text{m}$$

Cut off wavelength depends on the band gap energy

Quantum Efficiency

 The quantum efficiency η is the number of the electron—hole carrier pairs generated per incident—absorbed photon of energy hv and is given by

$$\eta = \frac{\text{number of electron-hole pairs generated}}{\text{number of incident-absorbed photons}} = \frac{I_p / q}{P_{in} / hv}$$

I_p is the photocurrent generated by a steady-state optical power P_{in} incident on the photodetector.

Avalanche Photodiode (APD)

- APD has an internal gain obtained by having a high electric field that energizes photo-generated electrons and holes
- These electrons and holes ionize bound electrons in the valence band upon colliding with them
- This mechanism is known as impact ionization

Conti....

- The newly generated electrons and holes are also accelerated by the high electric field and they gain enough energy to cause further impact ionization.
- This phenomena is called the avalanche effect

APD Vs PIN

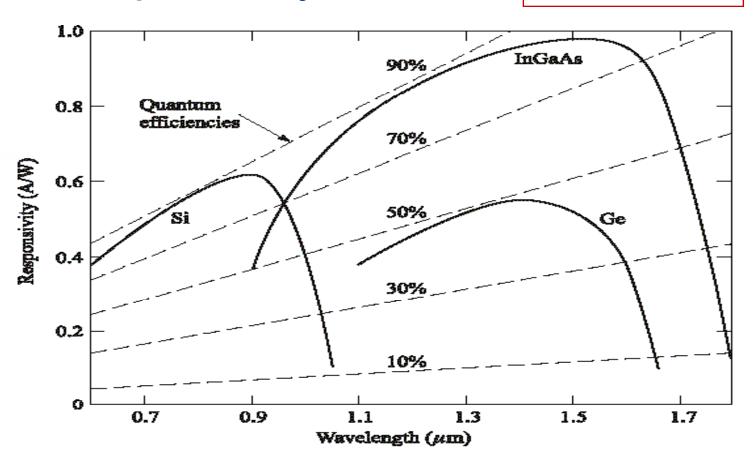
- APD has high gain due to self multiplying mechanism, used in high end systems.
- The tradeoff is the 'excess noise' due to random nature of the self multiplying process.
- APD's need high reverse bias voltage (Ex: 40 V)
- Therefore costly and need additional circuitry

Responsivity (93)

Quantum Efficiency (η) = number of e-h pairs generated / number of incident photons

$$\eta = \frac{I_p/q}{P_0/h\nu} \quad \Longrightarrow \quad \Re = \frac{I_p}{P_o} = \frac{\eta q}{h\nu} = \frac{\eta \lambda}{1.24} \quad \text{mA/mW}$$

Avalanche PD's have an internal gain M

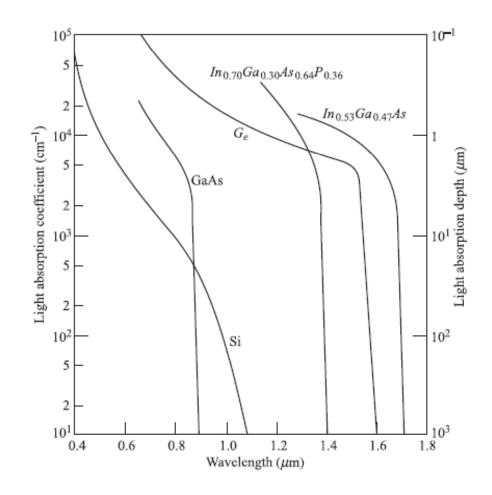

$$\Re_{APD} = \Re_{PIN} M$$

$$M = \frac{I_M}{I_p}$$

 $M = \frac{I_M}{I}$ | I_M : average value of the total multiplied current M = 1 for PIN diodes

Responsivity

$$\Re = \eta \lambda / 1.24$$



When $\lambda << \lambda_c$ absorption is low When $\lambda > \lambda_{c}$ no absorption

$$\lambda_c = \frac{hc}{E_g} = \frac{1.24}{E_g(eV)} \text{ } \mu\text{m}$$

Light Absorption Coefficient

- The upper wavelength cutoff is determined by the bandgap energy E_g of the material.
- At the lowerwavelength end, the photo response cuts off as a result of the very large values of α_s.

