#### **ELECTRONICS DEVICES AND CIRCUITS**

#### **SECTION - B**

### Semiconductors, Construction & Characteristics of Devices

### **OBJECTIVE**

# REVIEW OF SILICON AND GERMANIUM,

## Intoduction

 Solid state electronics arises from the unique properties of silicon and germanium, each of which has four <u>valence electrons</u> and which form <u>crystal lattices</u> in which substituted atoms (<u>dopants</u>) can dramatically change the electrical properties.

#### Silicon

In solid state electronics, either pure silicon or <u>germanium</u> may be used as the <u>intrinsic</u> <u>semiconductor</u>which forms the starting point for fabrication.

Each has four <u>valence electrons</u>, but germanium will at a given temperature have more free electrons and a higher conductivity.

Silicon is by far the more widely used semiconductor for electronics, partly because it can be used at much higher temperatures than germanium.





- In solid state electronics, either pure <u>silicon</u> or germanium may be used as the <u>intrinsic</u> <u>semiconductor</u> which forms the starting point for fabrication.
- Each has four <u>valence electrons</u>, but germanium will at a given temperature have more free electrons and a higher conductivity.
- Silicon is by far the more widely used semiconductor for electronics, partly because it can be used at much higher temperatures than germanium.



| Si                          | Ge                                                                                                                                                                                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.0 x 10 <sup>22</sup>      | 4.42 x 10 <sup>22</sup>                                                                                                                                                                          |
| 28.09                       | 72.60                                                                                                                                                                                            |
| approx. 3 x 10 <sup>5</sup> | approx. <b>1</b> x 10 <sup>5</sup>                                                                                                                                                               |
| Diamond                     | Diamond                                                                                                                                                                                          |
| 2.328                       | 5.3267                                                                                                                                                                                           |
| 11.9                        | 16.0                                                                                                                                                                                             |
| 2.8 x 10 <sup>19</sup>      | 1.04 x 10 <sup>19</sup>                                                                                                                                                                          |
| 1.04 x 10 <sup>19</sup>     | 6.0 x 10 <sup>18</sup>                                                                                                                                                                           |
| 4.05                        | 4.0                                                                                                                                                                                              |
| 1.12                        | 0.66                                                                                                                                                                                             |
| 1.45 x 10 <sup>10</sup>     | 2.4 x 10 <sup>13</sup>                                                                                                                                                                           |
|                             | Si<br>5.0 x 10 <sup>22</sup><br>28.09<br>approx. 3 x 10 <sup>5</sup><br>Diamond<br>2.328<br>11.9<br>2.8 x 10 <sup>19</sup><br>1.04 x 10 <sup>19</sup><br>4.05<br>1.12<br>1.45 x 10 <sup>10</sup> |

| Melting Point (deg C)                                                    | 1415                                              | 937                                               |
|--------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Minority Carrier Lifetime (s)                                            | 2.5 x 10 <sup>-3</sup>                            | approx. 10 <sup>-3</sup>                          |
| Mobility (Drift)<br>(cm <sup>2</sup> /V-s)<br>µ <sub>n</sub> , electrons | 1500                                              | 3900                                              |
| Mobility (Drift)<br>(cm <sup>2</sup> /V-s)<br>µ <sub>p</sub> , holes     | 475                                               | 1900                                              |
| Optical Phonon Energy (eV)                                               | 0.063                                             | 0.037                                             |
| Phonon Mean Free Path<br>(angstroms)                                     | 76 (electron)<br>55 (hole)                        | 105                                               |
| Specific Heat<br>(J/g-deg C)                                             | 0.7                                               | 0.31                                              |
| Thermal Conductivity at 300 K<br>(W/cm-degC)                             | 1.5                                               | 0.6                                               |
| Thermal Diffusivity (cm <sup>2</sup> /sec)                               | 0.9                                               | 0.36                                              |
| Vapor Pressure (Pa)                                                      | 1 at 1650 deg C;<br>10 <sup>-6</sup> at 900 deg C | 1 at 1330 deg C;<br>10 <sup>-6</sup> at 760 deg C |