Microprocessor \& Interfacing

 Lecture 10 Assembly Language ProgrammingECS DEPARTMENT DRONACHARYA COLLEGE OF ENGINEERING

Contents

- Applications
- Programs

Applications

- With out the assembly language programming microprocessor can not works. Instructions are the patterns which is require by the microprocessor to done any task.

Program-1

- Statement : Store the data byte $\mathbf{3 2 H}$ into memory location 4000 H .
MVI A, 32 H : Store 32 H in the accumulator
STA 4000H : Copy accumulator contents at address 4000H
HLT : Terminate program execution Program
LXI H : Load HL with 4000H
MVI M : Store 32H in memory location pointed by HL register pair (40 00H)
HLT : Terminate program execution

Program-2

- Addition of two numbers:

MVI A, 24H :load Reg ACC with 24H
MVI B , 56H : load Reg B with 56H
ADD B : ACC= ACC+B
OUT 01H :Display ACC contents on port 01H
HALT : End the program
Result: 7A (All are in Hex)
DAA operation for Decimal Adjust A+6=10H

Program-3

- Exchange the contents of memory locations 2000 H and 4000H
LDA 2000 H : Get the contents of memory location 2000 H into accumulator

MOV B, A : Save the contents into B register
LDA $4000 \mathrm{H}:$ Get the contents of memory location 4000Hinto accumulator
STA 2000H : Store the contents of accumulator at address 2000H MOV A, B : Get the saved contents back into A register STA 4000H : Store the contents of accumulator at address 4000H

Program-4

- Subtract the contents of memory location 4001 H from the memory location 2000 H and place the result in memory location 4002 H .
- Subtract two 8-bit numbers
- Sample problem:
- $(4000 \mathrm{H})=51 \mathrm{H}$
- $(4001 \mathrm{H})=19 \mathrm{H}$
- Result $=51 \mathrm{H}-19 \mathrm{H}=38 \mathrm{H}$
- Source program:
- LXI H, 4000H : HL points 4000 H
- MOV A, M : Get first operand
- INX H : HL points 4001 H
- SUB M : Subtract second operand
- INX H : HL points 4002 H
- MOV M, A : Store result at 4002H.
- HLT : Terminate program execution

Program-5

- Add the 16 -bit number in memory locations 4000 H and 4001 H to the 16 -bit number in memory locations 4002 H and 4003 H . The most significant eight bits of the two numbers to be added are in memory locations 4001 H and 4003 H . Store the result in memory locations 4004 H and 4005 H with the most significant byte in memory location 4005 H .
$(4000 \mathrm{H})=15 \mathrm{H}(4001 \mathrm{H})=1 \mathrm{CH}$
$(4002 \mathrm{H})=\mathrm{B} 7 \mathrm{H}$
$(4003 \mathrm{H})=5 \mathrm{AH}$
Result $=1 \mathrm{C} 15+5 \mathrm{AB} 7 \mathrm{H}=76 \mathrm{CCH}$
$(4004 \mathrm{H})=\mathrm{CCH}$
$(4005 \mathrm{H})=76 \mathrm{H}$

Cont..

LHLD 4000H : Get first I6-bit number in HL
XCHG : Save first I6-bit number in DE
LHLD 4002H : Get second I6-bit number in HL
MOV A, E : Get lower byte of the first number
ADD L: Add lower byte of the second number
MOV L, A : Store result in L register
MOV A, D : Get higher byte of the first number
ADC H : Add higher byte of the second number with CARRY
MOV H, A : Store result in H register
SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.
HLT : Terminate program execution

Program-6

- Subtract the 16 -bit number in memory locations 4002 H and 4003 H from the 16 -bit number in memory locations 4000 H and 4001 H . The most significant eight bits of the two numbers are in memory locations 4001 H and 4003 H .Store the result in memory locations 4004 H and 4005 H with the most significant byte in memory location 4005 H .
- Sample problem :
$(4000 \mathrm{H})=19 \mathrm{H}$
$(400 \mathrm{IH})=6 \mathrm{AH}(4004 \mathrm{H})=\mathrm{I} 5 \mathrm{H}(4003 \mathrm{H})=5 \mathrm{CH}$
Result $=6 \mathrm{~A} 19 \mathrm{H}-5 \mathrm{C} 15 \mathrm{H}=\mathrm{OE} 04 \mathrm{H}(4004 \mathrm{H})=04 \mathrm{H}$
(4005H) = OEH

Cont..

- Source program:

LHLD 4000H : Get first 16-bit number in HL
XCHG : Save first 16-bit number in DE
LHLD 4002H : Get second 16-bit number in HL
MOV A, E: Get lower byte of the first number
SUB L: Subtract lower byte of the second number
MOV L, A : Store the result in L register
MOV A, D : Get higher byte of the first number
SBB H : Subtract higher byte of second number with borrow
MOV H, A : Store 16-bit result in memory locations 4004H and 4005H.
SHLD 4004H : Store 16-bit result in memory locations 4004H and 4005H.
HLT : Terminate program execution

Program-7

- Find the l's complement of the number stored at memory location 4400 H and store the complemented number at memory location 4300 H .
- Sample problem:
$(4400 \mathrm{H})=55 \mathrm{H}$
Result $=(4300 \mathrm{~B})=\mathrm{AAB}$
- Source program:

LDA 4400B : Get the number
CMA : Complement number
STA 4300 H : Store the result
HLT : Terminate program execution

Program-8

- Multiply two 8 -bit numbers stored in memory locations 2200 H and 2201 H by repetitive addition and store the result in memory locations 2300 H and 2301 H
- Sample problem:
$(2200 \mathrm{H})=03 \mathrm{H}(2201 \mathrm{H})=\mathrm{B} 2 \mathrm{H}$
Result $=\mathrm{B} 2 \mathrm{H}+\mathrm{B} 2 \mathrm{H}+\mathrm{B} 2 \mathrm{H}=216 \mathrm{H}=216 \mathrm{H}$
$(2300 \mathrm{H})=16 \mathrm{H}$
$(2301 \mathrm{H})=02 \mathrm{H}$

Cont..

- Source program:

LDA 2200H
MOV E, A
MVI D, oo : Get the first number in DE register pair
LDA 2201 H MOV C, A : Initialize counter
LX I H, oooo H : Result = o
BACK: DAD D : Result = result + first number
DCR C : Decrement count
JNZ BACK : If count o repeat
SHLD 2300H : Store result
HLT : Terminate program execution

Scope of Research

- Develop the new method which is require less running time, less memory space and also have less no of instructions.

