
LECTURE 26, 27

Time Delay

Topics to be coveredTopics to be covered
 Time Delay
 Flowchart
 Configuring inputs and outputs

Time Delay with FlowchaTime Delay with Flowchartrt

MCOUNT EQU 0x0C
NCOUNT EQU 0x0D

DELAY MOVLW 0XFF
MOVWF MCOUNT

GET_N MOVLW 0XFF
MOVWF NCOUNT

DEC_N DECFSZ NCOUNT,F
GOTO DEC_N
DECFSZ MCOUNT,F
GOTO GET_N
RETURN

Configuring I/O : TRISConfiguring I/O : TRIS
 TRIS is the (obsolete*) instruction

for configuring inputs and outputs.

 The PIC16F84 has 13 lines that
can be used as inputs or outputs.
◦ The lines are grouped into 8

PORTB lines and 5 PORTA lines.
◦ On the chip they are labelled

RB7..RB0 and RA4..RA0.

 The programmer needs to tell the
processor what inputs or outputs
are needed.

 The simple way to do this uses
the TRIS instruction

Using TRISUsing TRIS
METHOD:
Put a pattern of bits in the working register. O’s for outputs and 1’s for inputs.
Now use the TRIS instruction with PORTA or PORTB (whichever you want to
configure).

Using TRIS Using TRIS -- examplesexamples

o Setting PORTB lines as all outputs

MOVLW 0x00
TRIS PORTB

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o Setting PORTA lines as all outputs

MOVLW 0x00
TRIS PORTA

Using TRIS Using TRIS -- examplesexamples

o Setting PORTB lines as all inputs

MOVLW 0xFF
TRIS PORTB

1 1 1 1 1 1 1 1

o Setting PORTA lines as all inputs

MOVLW 0xFF
TRIS PORTA

o Note - it doesn’t matter that we have configured 3
lines that don’t exist. But if you wanted you could
use the value 1F (ie. 00011111)

1 1 1 1 1 1 1 1

TRIS TRIS -- what else?what else?

 In our examples here we haven’t
cleared the values on the ports.
(e.g., CLRF PORTB)
◦ It’s usually good practice to clear

them, i.e., to make sure you know
they start at zero or some other
specified value.

 Advise against using RA4.
◦ This is a special line. For example,

it can be used for an external timer.

Using I/O PortsUsing I/O Ports
; WRITTEN BY VINAY NASSA

; DATE 10/10/2010

; FILE SAVED AS TEST.ASM

; DEVICE 16F84

; OSCILLATOR XT (4MHZ)

; WATCHDOG DISABLED

; FUNCTION OUTPUTS THE VALUE 0XF1 TO 8 LEDS CONNECTED TO PORTB

; ----------------------- EQUATES ------------------------------------

PORTB EQU 0X06 ;ASSIGN THE PORTB REGISTER TO THE LABEL 'PORTB'

; ----------------------- MAIN PROGRAM ------------------------------------

START ORG 0X00 ;'ORG' SPECIFIES THE MEMORY LOCATION OF THE PROGRAM

MOVLW 0X00 ;MOVE THE VALUE 00, I.E., ALL 0'S TO W

TRIS PORTB ;CONFIGURE PORTB WITH THE VALUE IN W (THE

;WORKING REGISTER) 1=INPUT AND 0=OUTPUT.

;SO 00 (ALL 0'S) MAKES ALL PORTB LINES OUTPUTS.

CLRF PORTB ;CLEAR THE PORTB REGISTER

MOVLW 0XF1 ;MOVE THE HEX VALUE F1 TO THE WORKING REGISTER

MOVWF PORTB ;OUTPUT THE VALUE TO PORTB

LOOP GOTO LOOP

END

InterruptsInterrupts
 Interrupts are used to change the normal flow of a program so that

it can perform another (specified) function.

 Interrupts allow external events to change (interrupt) the normal
flow of the software, executing code specifically designed for a
response to the change.

 Processors without in-built interrupt support require programs
which regularly inspect selected input lines. This is called ‘polling’.
Polling is very expensive in terms of processing.

 Interrupts enable processors to automatically respond to specified
events and concentrate processing power on executing a main

program.

InterruptsInterrupts

One of the possible sources of interrupt and how it affects the main program

InterruptsInterrupts
 When an interrupt occurs the instruction currently being executed is completed.

The program counter then jumps to address 0x04 in program memory and executes
the instruction stored there.

 Interrupts can be enabled or disabled (masked) individually or globally (all disabled
regardless of source.) This is done via the interrupt control register (INTCON.)

 Using interrupts:
ORG 0X00
GOTO START

;
ORG 0X04
GOTO INT_SERV

INT_SERV ; INT. SERV ROUTINE HERE
………………
RETFIE ; RETURN FROM INTERRUPT

;
START ; MAIN PROGRAM GOES HERE

…………………
END

InterruptsInterrupts
The PIC16F84 supports 4 in-built interrupt

sources:
◦ RB0 interrupt: Edge-triggered interrupt (via RB0/INT pin)

◦ Port B change (bits 7-4): Port B logic level change on bits 7,6,5,4

◦ TMR0 overflow: Timer/counter overflow interrupt

◦ EEPROM write complete

 The RB0/INT is an edge-triggered interrupt. It can be enabled and disabled
using the INTE flag in the INTCON register.

 PORTB pins (RB7 to RB4 inclusive) can be used as external interrupts.
When configured as inputs, these pins can trigger an interrupt on change.

 Only 5 PORTB pins support interrupts. There are no interrupts on PORTA.

InterruptsInterrupts
Interrupts are controlled by the INTCON

register

Individual Interrupt Enable bits

Global Interrupt Enable (GIE)

Individual Interrupt Flags

Control registerControl register
 INTCON Register

 Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1 = all interrupts are enabled
0 = all interrupts are disabled

 Bit 6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an
interrupt at the end of a writing routine to EEPROM
1 = interrupt enabled
0 = interrupt disabled
If EEIE and EEIF (which is in EECON1 register) are set simultaneously , an
interrupt will occur

 bit 5 T0IE (TMR0 Overflow Interrupt Enable bit) Bit which enables
interrupts during counter TMR0 overflow.
1 = interrupt enabled
0 = interrupt disabled
If T0IE and T0IF are set simultaneously, interrupt will occur.

 bit 4 INTE (INT External Interrupt Enable bit) Bit which enables
external interrupt from pin RB0/INT.
1 = external interrupt enabled
0 = external interrupt disabled
If INTE and INTF are set simultaneously, an interrupt will occur.

 bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts
to occur at the change of status of pins 4, 5, 6, and 7 of port B.
1 = enables interrupts at the change of status
0 =interrupts disabled at the change of status
If RBIE and RBIF are simultaneously set, an interrupt will occur.

 bit 2 T0IF (TMR0 Overflow Interrupt Flag bit) Overflow of counter
TMR0.
1 = counter changed its status from FFh to 00h
0 = overflow did not occur
Bit must be cleared in program in order for an interrupt to be
detected.

INTCON RegisterINTCON Register

INTCON RegisterINTCON Register
 bit 1 INTF (INT External Interrupt Flag bit) External

interrupt occurred.
1 = interrupt occurred
0 = interrupt did not occur
If a rising or falling edge was detected on pin
RB0/INT, (which is defined with bit INTEDG in
OPTION register), bit INTF is set.

 bit 0 RBIF (RB Port Change Interrupt Flag bit) Bit
which informs about changes on pins 4, 5, 6 and 7
of port B.
1 = at least one pin has changed its status
0 = no change occurred on any of the pins
Bit has to be cleared in an interrupt subroutine to
be able to detect further interrupts.

Interrupts : Saving ContextInterrupts : Saving Context
 We usually need to save context (save

important current values) inside an interrupt
service routine.

 These usually include the working register
and the STATUS register.

 The values are backed up and restored
inside the interrupt service routine.

 The values are backed up at the start and
restored at the end.

InterruptsInterrupts
 To use interrupts we need to set

(enable) GIE.
 GIE is the Global Interrupt Enable

and it ‘lives’ at bit number 7 in the
interrupt control register.

 But enabling GIE doesn’t enable any
of the four types of interrupts.

 We still have to set each type of
interrupt we want to use, by setting
the corresponding enable bit.

 GIE is useful if we want to turn OFF
interrupts. If we have all four types
of interrupts enabled, then clearing
GIE will stop all the different types of
interrupts from having an effect.

Individual Interrupt Enable bits

Global Interrupt Enable (GIE)

Individual Interrupt Flags

InterruptsInterrupts
EXAMPLE: To use the INTE interrupt.
 INTE is the edge-triggered interrupt

available on RB0.
 We need to connect our interrupt source (a

button perhaps) to RB0.
 We need to configure RB0 as an INPUT.
 We need to write an interrupt service

routine. This is a special subroutine that
will run whenever the interrupt happens.

 We need to set GIE and INTE.
 Now our interrupt service routine will run

when the button is pressed, because this
will set the interrupt flag.

 We must make sure our interrupt service
routine clears the interrupt flag (INTF).

 There needs to be a PORTB read or
write prior to the clearing of RBIF.

I n d iv id u a l I n t e r r u p t E n a b le b it s

G lo b a l I n t e r r u p t E n a b le (G I E)

I n d iv id u a l I n t e r r u p t F la g s

GIE EQU 7
INTE EQU 4
INTF EQU 1

INTCON EQU 0x0B

ORG 0x00
GOTO START
ORG 0x04
GOTO INT_SER

INT_SER …
BCF INTCON,INTF
…
RETFIE

START ….
MOVLW 0x01 ;-RB0 is an I/P
TRIS PORTB ;/
BSF INTCON, GIE ;-Enable interrupt
BSF INTCON, INTE;/

