LECTURE 26, 27

Time Delay

Topics to be covered

 Time Delay
* Flowchart
» Configuring inputs and outputs

?Ime Delay with Flowchart

DELAY SET MCOUNT £ 285
GET-N 5| SET ™NCOUNT = 255\
MCOUNT EQU 0x0C i
NCOUNT EQU 0x0D DEC.N _ "SECKEMENT
DELAY MOVLW OXFF NCouNT
MOVWF MCOUNT
GET N MOVLW OXFF 1S
MOVWF NCOUNT NCoOUNT= O?
DEC_N DECFSZ NCOUNT,F
GOTO DEC_N vyEeES
DECFSZ MCOUNT,F
GOTO GET N DECREMENT
RETURN MCOUNT

NO /S
< _MCouNT =0 °

Re TukN To
PROGRAM

Configuring I/O : TRIS

TRIS is the (obsolete*) instruction
for configuring inputs and outputs.

The PIC16F84 has 13 lines that
can be used as inputs or outputs.

> The lines are grouped into 8
PORTB lines and 5 PORTA lines.

> On the chip they are labelled
RB7..RB0O and RA4..RAO.

RAL/TOCKI

REO/INT
The programmer needs to tell the LE

processor what inputs or outputs
are needed.

REZ
RE

The simple way to do this uses
the TRIS instruction

mmﬂmm-ﬁ-mmT

=sd910ld

13
17
16
15
14
13
12
1
10

O5C1/GLKIN
sG2/GLKOUT

Using TRIS

METHOD:

Put a pattern of bits in the working register. O’s for outputs and 1’s for inputs.
Now use the TRIS instruction with PORTA or PORTB (whichever you want to

w

(Norr{inﬂ Feﬂiﬁh’if)

configure®

A | ” .- 0\ N 1\ P\%
R8¢ RBI R@2 RR1 O
ce3 Koo Res REv RBIT B2 REL T

RAY RAZ RA2 RAI RAO

TR IS uses the curfent bib ’,Doc'u,-ern

n W 4o define if lines ore
inputs of oukpuks

Using TRIS - examples

000 ¥ 00 o o 0 ¥ o
(Norkiﬂﬂ r@ﬂ ,6"6/) O O No(Ru’\ﬂ ("6916?6'0 O O
ﬁ‘i A A oA P T
A Ao D A roA P P A A i 250
R®} Fge Res R8¢ RB3 Rz Re) RBf) 2e3r R RBS R8¢ RB3 RR2 R%} o
! r of or of © of of or ©
y RAO R4 RAZ RA2 RAI RAO

Ra¥y RAZ Ra2 RAI

0 Setting PORTB lines as all outputs
0 Setting PORTA lines as all outputs

MOVLW Ox00

TRIS PORTB MOVLW 0x00

TRIS PORTA

Using TRIS - examples

1 1 1 W 1 1 1 1
(working registe) 1 1 Lordy dad 11

A A

7 =l
RBo Y S S ? 7 \ Rao
or 2g3 Ree ReS R@rq» RB3 RB2 Re) o

Res R8¢ RB3 Re2 RR)
R&F R86 & of of or of

RAY RAZ RA2 RAI RAO

of or of

kAt RAz RA2 RAI RAO

0 Setting PORTB lines as all inputs 0o Setting PORTA lines as all inputs
MOVLW — OxFF MOVLW OxFF
TRIS PORTB TRIS PORTA

0 Note - it doesn't matter that we have configured 3
lines that don't exist. But if you wanted you could
use the value 1F (ie. 00011111)

TRIS - what else?

« In our examples here we haven't

cleared the values on the ports. RAZ = 10 18] w—= RAl
RAT -]2 17[] <-—» RAD
(e.g., CLRF PORTB) RA4/TOCK] %E 16[] 4—— OSC1/CLKIN

> It's usually good practice to clear MGLR 04 'O 150 — 0SC2/GLKOUT
them, i.e., to make sure you know Ves —= L5 > 14 -+—— Vdd
they start at zero or some other REO/INT <— &6 11 13] «—» RE7
specified value RE1 <— 07 x 2] «— REBS
P ' RE2 -—w []8 11[] -—» RES
REZ -a—» [0 100 «—» REB4

» Advise against using RA4.

o This is a special line. For example,
it can be used for an external timer.

Using I/O Ports

; WRITTEN BY
DATE

FILE SAVED AS
DEVICE
OSCILLATOR
WATCHDOG
FUNCT ION

LI} LI | LI | LI} ua LI | LI}

START ORG 0X00
MOVLW OXO0O0

TRIS PORTB

CLRF PORTB
MOVLW OXF1
MOVWF PORTB

LOOP GOTO LOOP
END

VINAY NASSA

10/10/2010

TEST.ASM

16F84

XT (4MHZ)

DISABLED

OUTPUTS THE VALUE OXF1 TO 8 LEDS CONNECTED TO PORTB

= EQUATES —— oo

;ASSIGN THE PORTB REGISTER TO THE LABEL "PORTB®

—— MAIN PROGRAM === mmmm oo

; "ORG" SPECIFIES THE MEMORY LOCATION OF THE PROGRAM
;MOVE THE VALUE 00, 1.E., ALL 0"S TO W

;CONFIGURE PORTB WITH THE VALUE IN W (THE

;WORKING REGISTER) 1=INPUT AND O=OUTPUT.

;SO 00 (ALL 0"S) MAKES ALL PORTB LINES OUTPUTS.
;CLEAR THE PORTB REGISTER

;MOVE THE HEX VALUE F1 TO THE WORKING REGISTER
;OUTPUT THE VALUE TO PORTB

Interrupts

Interrupts are used to change the normal flow of a program so that
it can perform another (specified) function.

Interrupts allow external events to change (interrupt) the normal
flow of the software, executing code specifically designed for a
response to the change.

Processors without in-built interrupt support require programs
which regularly inspect selected input lines. This is called ‘polling’.
Polling Is very expensive in terms of processing.

Interrupts enable processors to automatically respond to specified
events and concentrate processing power on executing a main

program.

Interrupts

FPIC1eFE4

N — Foint at which
an interrpt

) occured
Prograrm execution
flam

FATOCK]

-
45 -
MCLR Subprogram
where interrupt is
E[WS5 processed
RBOMNHT
T1 +
‘r.l
e Continuation of
the normal Return frora
prograrm SUBPErQgra T

execution

One of the possible sources of interrupt and how it affects the main program

Interrupts

* When an interrupt occurs the instruction currently being executed is completed.

The program counter then jumps to address 0x04 in program memory and executes
the instruction stored there.

» Interrupts can be enabled or disabled (masked) individually or globally (all disabled
regardless of source.) This is done via the interrupt control register (INTCON.)

» Using interrupts:
ORG 0X00
GOTO START

ORG 0X04
GOTO INT_SERV

INT_SERV ; INT. SERV ROUTINE HERE
RETFIE ; RETURN FROM INTERRUPT
START ; MAIN PROGRAM GOES HERE

Interrupts

The PIC16F84 supports 4 in-built interrupt

sSources.
RBO interrupt: Edge-triggered interrupt (via RBO/INT pin)

o

o

Port B change (bits 7-4): Port B logic level change on bits 7,6,5,4

(o]

TMRO overflow: Timer/counter overflow interrupt

o EE 7] 5 4 3 2 1 0
GIE EEILE TOIL INTE RBIE TOII INTF RBIF
Global ELE write Timer INTerrupt | RB port l'imer INTerrupt | RB port
Interrupt complete | Overflow | Enable change Overllow | Flag change
Enable Interrupt Interrupt Interrupt Interrupt Interrupt
Enable Enable Enable Flag Flag
{RBO) (RB7:4) (RBO) (RB7:4)

O The RBO/INT is an edge-triggered interrupt. It can be enabled and disabled
using the INTE flag in the INTCON register.

0 PORTB pins (RB7 to RB4 inclusive) can be used as external interrupts.
When configured as inputs, these pins can trigger an interrupt on change.

O Only 5 PORTB pins support interrupts. There are no interrupts on PORTA.

Interrupts

Interrupts are controlled bv the INTCON

| O 5 4 3 2 1 0
GILE LETE TOIE INTE RBIE TOIrF INTF RBIF
Global ELE write | Timer INTerrupt | RB port l'imer INTerrupt | RB port
Interrupt | complete | Overflow | Enable change Overllow | Flag change
Enable Interrupt § Interrupt [nterrupt | Interrupt Interrupt
Enable Enable Enable Flag Flag
(B0 (RB7:4) (RBU) (RB7:4)
GIZ cElE | ToiIE | INTE | RBIE p~TJ0F | INTF | RBIE
bit7 bit)

P
« »

o
>

A

Global Interrupt Enable (GIE)

Individual Interrupt Flags

Control register

* INTCON Register

RoaAm-0 RAaSN-0 RSW-0 RAa-0 RAasy-0 RAS-0 BREAN-00 FEo-0

S E EEIE TOIE IMNTE REIE TOIF IMNTF REIF
Bty
Legend:=
R = FReadahble bit v ="voritalkole bit
L = Lnimplemented bit, read as '00° =N = vwWalue st power -on reset

» Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1 = all interrupts are enabled
0 = all interrupts are disabled

« Bit6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an
interrupt at the end of a writing routine to EEPROM
1 = interrupt enabled
0 = interrupt disabled
If EEIE and EEIF (which is in EECONL1 register) are set simultaneously , an
interrupt will occur

INTCON Register

e bit5 TOIE (TMRO Overflow Interrupt Enable bit) Bit which enables
interrupts during counter TMRO overflow.
1 = interrupt enabled
O = interrupt disabled
If TOIE and TOIF are set simultaneously, interrupt will occur.

* bit4 INTE (INT External Interrupt Enable bit) Bit which enables
external interrupt from pin RBO/INT.
1 = external interrupt enabled
0 = external interrupt disabled
If INTE and INTF are set simultaneously, an interrupt will occur.

« Dbit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts
to occur at the change of status of pins 4, 5, 6, and 7 of port B.
1 = enables interrupts at the change of status
O =interrupts disabled at the change of status
If RBIE and RBIF are simultaneously set, an interrupt will occur.

e bit 2 TOIF (TMRO Overflow Interrupt Flag bit) Overflow of counter
TMRO.
1 = counter changed its status from FFh to 00h
0 = overflow did not occur
Bit must be cleared in program in order for an interrupt to be
detected.

I NT-(;tQI!N: (ﬁ'@gllrétn%l;upt Flag bit) External

Interrupt occurred.

1 = interrupt occurred

O = interrupt did not occur

If a rising or falling edge was detected on pin
RBO/INT, (which is defined with bit INTEDG in
OPTION register), bit INTF is set.

 bit 0 RBIF (RB Port Change Interrupt Flag bit) Bit
which informs about changes on pins 4, 5, 6 and 7
of port B.
1 = at least one pin has changed its status
0 = no change occurred on any of the pins
Bit has to be cleared in an interrupt subroutine to
be able to detect further interrupts.

Interrupts : Saving Context

» We usually need to save context (save
Important current values) inside an interrupt
service routine.

» These usually include the working register
and the STATUS regqister.

» The values are backed up and restored
Inside the interrupt service routine.

* The values are backed up at the start and
restored at the end.

Interrupts

* To use interrupts we need to set
(enable) GIE.

» GIE is the Global Interrupt Enable

and it ‘lives’ at bit number 7 in the [GIE EEEE | TOIE | INTE | RBIE TOIF INTF RBIF

Interrupt control register. o o

a »n [
A < » N »

e But enab“ng GIE doesn’t enable any Individual Interrupt Enable bits
of the four types of interrupts.

— Global Interrupt Enable (GIE)

» We still have to set each type of Individual Interrupt Flags
interrupt we want to use, by setting
the corresponding enable bit.

» GIE is useful if we want to turn OFF
interrupts. If we have all four types
of interrupts enabled, then clearing
GIE will stop all the different types of
Interrupts from having an effect.

Interrupts

EXAMPLE: To use the INTE interrupt.

INTE is the edge-triggered interrupt
available on RBO.

We need to connect our interrupt source (a
button perhaps) to RBO.

We need to configure RBO as an INPUT.

We need to write an interrupt service
routine. This is a special subroutine that
will run whenever the interrupt happens.

We need to set GIE and INTE.

Now our interrupt service routine will run
when the button is pressed, because this
will set the interrupt flag.

We must make sure our interrupt service
routine clears the interrupt flag (INTF).

There needs to be a PORTB read or
: . I | : : |

GIE

EEIE | TOIE I INTE REIE TOIF INTF REIF

bit7

<

bitd

»

<

Individual Interrupt Enable bits

Individual Interrupt Flags

Global Interrupt Enable (GIE)

» <@
> >

INTCON

ORG
GOTO
ORG
GOTO

INT_SER ...

START

BCF

RETFIE

0x0B

0x00
START
0x04
INT_SER

INTCON,INTF

0x01 ;-RBO is an I/P
PORTB)

INTCON, GIE ;-Enable interrupt
INTCON, INTE;/

