

1. INTRODUCTION

- Television –"far sight".. to see from a distance
- Earlier Selenium photosensitive cells were used for converting light from pictures into electrical signals
- Real breakthrough invention of CRT
- First Camera tube iconoscope
- 1935 TV broadcasting started
- 1959 in India

Television Systems

Three Monochrome Systems developed

- 525 line American
- 625 line European
- 819 line French

UK – 415 line – but changed to 625 line system

India – 625B Monochrome system

Colour TV standards

NTSC – National television Systems Committee USA – 1953

adopted by Japan, Canada

PAL – Phase Alteration by Line

Germany – reduces colour display errors adopted by UK, Australia, Spain, India(compatible with 625B)

SECAM – Sequential a memorie

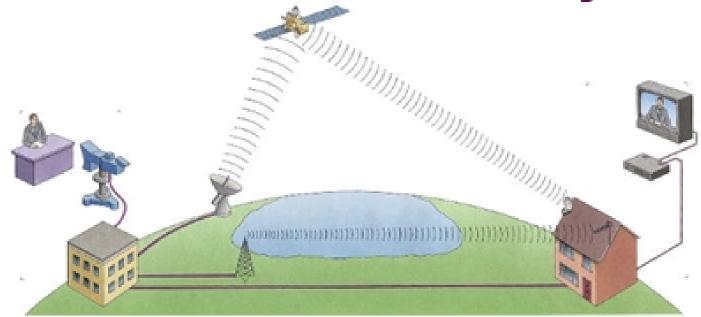
France - 1967

SECAM IV & V – developed at National Institute of Research, Russia and called as NIR-SECAM: adopted by Hungary

Deciding factor for adoption: compatibility with the already existing monochrome system

Band Width, Frequency Band & Coverage

• Band Width : Around 7 MHz


America – 6 MHz

British – 8 MHz

France – 14 MHz

- Frequency Band :
 - -Started in VHF band: 41 68 MHz & 174 –
 - 230 MHz
 - -Later added UHF band : 470 890 MHz
- Coverage: limited to Line of Sight distance: 75
 - **-1**40 Km
 - -can be extended by relay stations

Transmission of Audio and Video Signals

- The image captured is combined with other electronic content (text and graphics) plus audio.
- The combined image is amplified and transmitted via AM (amplitude modulation) and FM (frequency modulation) carrier waves to either a satellite feed or from direct transmission to a television receiver.

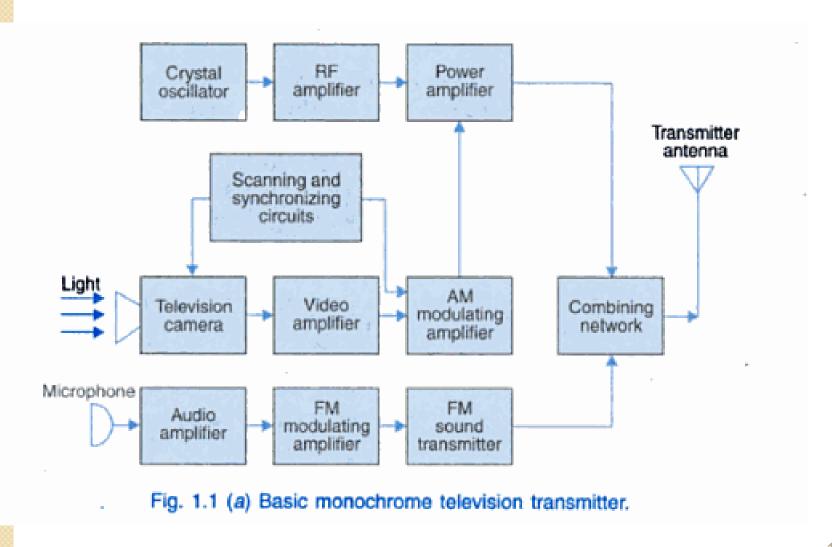
The receiver decodes the signal

- The electronic signal is decoded by the receiver; splitting the FM wave to the audio section and the AM wave to the video section of the television.
- http://www.howstuff works.com/tv.htm

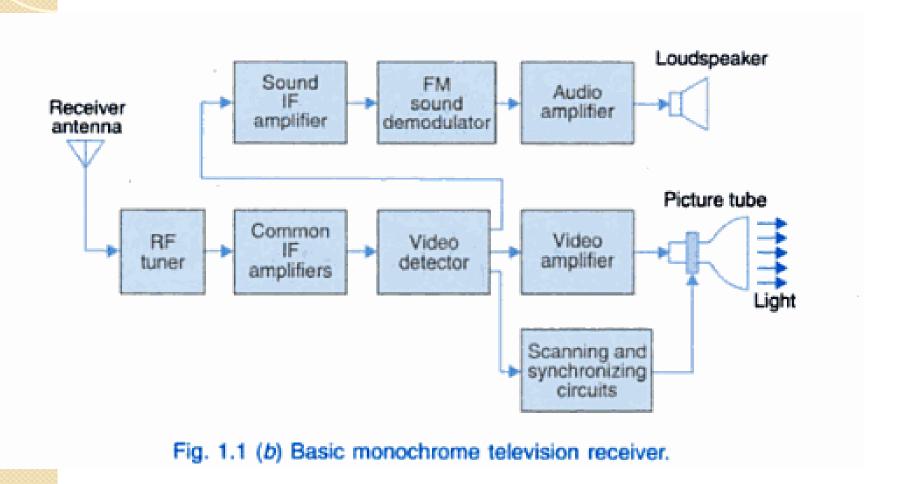
ELEMENTS OF A TELEVISION SYSTEM

- Fundamental aim: To extent the sense of sight beyond its natural limit along the sound associated with the scene
- n 625 line monochrome system:

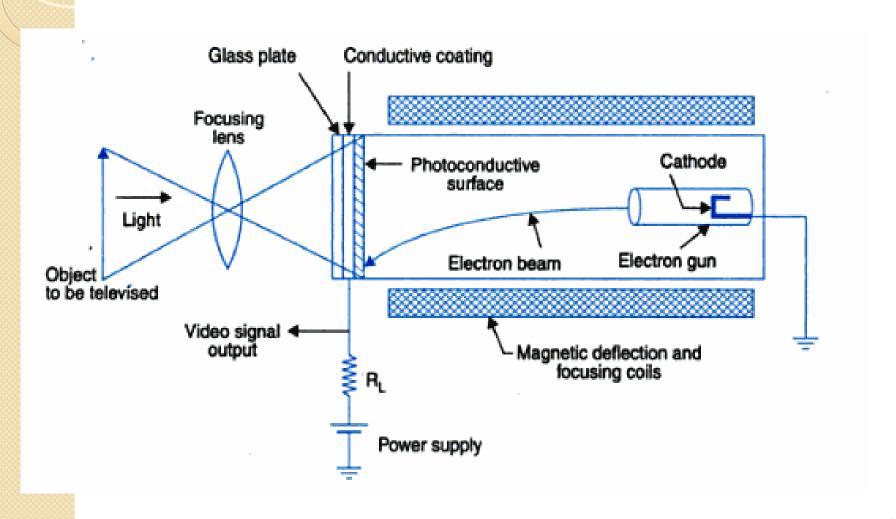
 Picture signal amplitude modulated
 Sound signal frequency modulated


Carrier frequencies are suitably spaced and modulated outputs radiated through a common antenna

Picture Transmission


- of a large number of bright and dark areas, each representing a picture element infinite number of pieces existing simultaneously
- Information is a function of two variables: Time and Space
- Instead of using infinite number of channels simultaneously, we use Scanning
- Scanning: Optical information is converted into electrical form and transmitted element by element, one at a time in a sequential manner to cover the entire scene to be televised
- done at very fast rate
 - repeated a number of times per second to create an illusion of simultaneous pick-up

Basic TV system Txmitting Ant Camer Loud **AM Video** Sound speak **Txmitter** section Video Scann & syn RF & IF Detector Picture 1 section section Scanng & FM sound syn **Txmitter**


Basic Monochrome Television Transmitter

Basic Monochrome Television Receiver

Simplified cross-sectional view of a Vidicon TV camera tube

TV Camera

- Heart of a TV camera is a Camera tube
- Camera tube converts optical information into orresponding electrical signal
- Amplitude proportional to brightness
- Optical image is focused by a lens assembly to a ectangular glass face-plate
- Transparent conductive coating at the inner side of the glass face-plate
- On which is laid a thin layer of photoconductive material having a very high resistance when no light falls on it.
- Resistance decreases when the intensity increases
- Electron beam used to pick up the picture information available on the target plate in terms of varying esistance
- Beam is formed by an electron gun deflected by a pair
 of deflection coils kept mutually perpendicular on the
 glass plate to achieve scanning of the entire target area

e Dei cor

• Us

• De

tra

Defineits

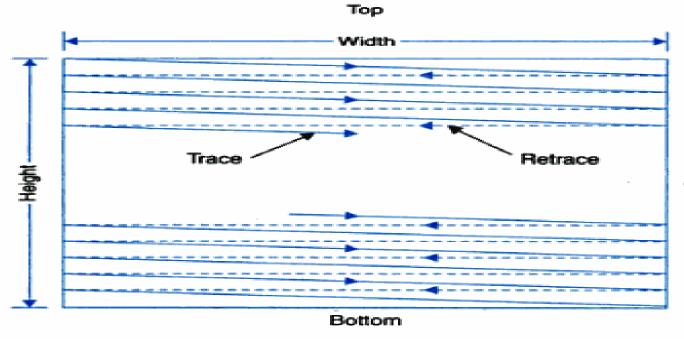


Fig. 1.2 (b) Path of scanning beam in covering picture area.

Sound Transmission

- Microphone converts the sound associated vith the picture into proportional voltage
- Single valued function of time so needs a single channel
- Amplified frequency modulated using assigned carrier frequency combined with he AM picture transmitter output fed to common antenna radiated in the form of electromagnetic waves

Picture reception

- Receiving antenna intercepts the radiated picture and sound carrier signal feeds to RF tuner
- Receiver heterodyne type
- Employs 2 or 3 stages of IF amplification
- Demodulated to recover video signal
- Amplified and coupled to picture tube (same as CRT) which converts the electrical signal back into picture elements with same degree of black and white

Picture Tube

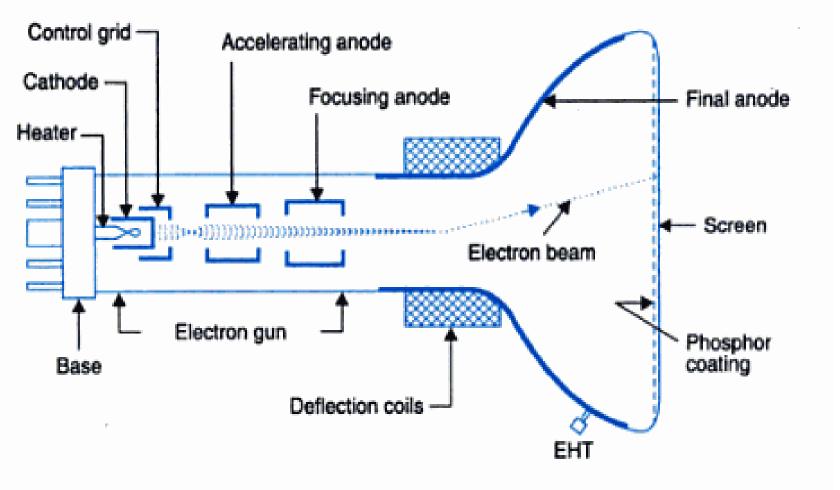


Fig. 1.3 Elements of a picture tube.

- eam is deflected by a pair of deflecting coils in he same way and rate as the beam scans the arget area in the camera tube
- ideo signal is fed to the grid or cathode of the icture tube
- Vhen the varying signal voltage makes the control rid less negative, the beam current is increased, naking the spot on the screen brighter
- lore negative grid voltage reduces brightness

Sound reception

Sound signals are separated from the picture ignals in the video detector section amplified – demodulated (FM detector) Fed to audio amplifier and loud speaker

- To ensure perfect synchronization between scene being televised and the picture produced on the raster
- Synchronizing pulses are transmitted during retrace ie flyback intervals
- Distinct for horizontal and vertical motion control
- Radiated along with the picture details
- Processed at the receiver and fed to the picture tube sweep circuitry

Receiver controls

- Channel selector for selecting desired channel
- Fine tuning control for obtaining best picture details in the selected channel
- Hold control to get steady picture in case it rolls up or down
- Brightness control varies the beam intensity of the picture tube
- Contrast control gain control of the video amplifier
- Volume and tone control part of audio amplifier

Colour Television

- Based on the theory of additive colour mixing: all colours including white can be created by mixing red, green and blue lights
- Video signal for red, green and blue information are combined and transmitted along with the brightness(monochrome) signal
- At the receiver, the three colour signals are separated and fed to the three electron guns of the colour picture tube
- Screen of the picture tube has red, green and blue phosphors arranged in alternate dots
- Each gun produces an electron beam to illuminate the three colour phosphors separately on the fluorescent screen
- Our eye then integrates the red, green and blue colour information and their luminance to perceive the actual colour and brightness of the picture being televised