ANTENNAS, WAVE PROPAGATION \&TV ENGG

Topics to be covered

- Retarded Potential

RETARDED POTENTIALS

At point $r=(x, y, z)$, integrate over charges at positions r^{\prime}
where $[\rho] \rightarrow$ evaluate ρ at retarded time:

$$
[\rho]=\rho\left(\vec{r}^{\prime}, t-\frac{1}{c}\left|\vec{r}-\vec{r}^{\prime}\right|\right)
$$

Similar for [j]

- So potentials at point \vec{r} and time t are affected by conditions at

$$
\text { point } \stackrel{r}{r}^{\prime} \text { at a retarded time, } t-\frac{1}{c}\left|\stackrel{r}{r}-\stackrel{r}{r^{\prime}}\right|
$$

Given a charge and current density, find retarded potentials ϕ and $\overrightarrow{\mathrm{A}}$ by means of (7) and (8)

Then use (1) and (2) to derive E, B
Fourier transform \rightarrow spectrum

Radiation from Moving Charges

The Liénard-Wiechart Potentials
Retarded potentials of single, moving charges

Charge q

$$
\begin{array}{lrl}
\text { moves along trajectory } & \vec{r} & =\vec{r}_{0}(t) \\
\text { velocity at time } \mathrm{t} & \vec{u}(t)=\dot{\vec{r}}_{o}(t)
\end{array}
$$

charge density

$$
\rho(\vec{r}, t)=q \delta\left(\vec{r}-\vec{r}_{0}(t)\right)
$$

current density

$$
\vec{j}(\vec{r}, t)=q \vec{u}(t) \delta\left(\vec{r}-\vec{r}_{0}(t)\right)
$$

Can integrate over volume $d^{3} r$ to get total charge and current

$$
\begin{aligned}
& q=\int \rho(\vec{r}, t) d^{3} \vec{r} \\
& q \vec{u}=\int \vec{j}(\vec{r}, t) d^{3} \vec{r}
\end{aligned}
$$

What is the scalar potential for a moving charge?
Recall $\quad \phi(\vec{r}, t)=\int \frac{[\rho]}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime} \quad \begin{aligned} & \text { where [] denotes } \\ & \text { evaluation at retarded } \\ & \text { time }\end{aligned}$

$$
\phi(\vec{r}, t)=\int d^{3} \vec{r}^{\prime} \int d t^{\prime} \frac{\rho\left(\vec{r}^{\prime}, t\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \delta\left(t^{\prime}-t+\frac{\left|\vec{r}-\vec{r}^{\prime}\right|}{c}\right)
$$

Substitute $\quad \rho\left(\vec{r}^{\prime}, t^{\prime}\right)=q \delta\left(\vec{r}^{\prime}-\vec{r}_{0}\left(t^{\prime}\right)\right)$

> light travel time between \vec{r} and \vec{r}^{\prime}
and integrate $\quad \int d^{3} \vec{r}^{\prime}$

$$
\begin{aligned}
& \phi(\vec{r}, t)=\int d^{3} \vec{r}^{\prime} \int d t^{\prime} \frac{q \delta\left(\vec{r}^{\prime}-\vec{r}_{0}\left(t^{\prime}\right)\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \delta\left(t^{\prime}-t+\frac{\left|\vec{r}-\vec{r}^{\prime}\right|}{c}\right) \\
& =q \int d t^{\prime} \frac{\delta\left(t^{\prime}-t+\frac{\left|\vec{r}-\vec{r}^{\prime}\right|}{c}\right)}{\left|\vec{r}-\vec{r}_{0}\left(t^{\prime}\right)\right|}
\end{aligned}
$$

Now let

$$
\vec{R}\left(t^{\prime}\right)=\vec{r}-\vec{r}_{0}\left(t^{\prime}\right) \quad \text { vector }
$$

$$
R\left(t^{\prime}\right)=\left|\vec{R}\left(t^{\prime}\right)\right| \quad \text { scalar }
$$

then

$$
\phi(\vec{r}, t)=q \int R^{-1}\left(t^{\prime}\right) \delta\left(t^{\prime}-t+\frac{R\left(t^{\prime}\right)}{c}\right) d t^{\prime}
$$

Now change variables again $\quad t^{\prime \prime}=t^{\prime}-t+\frac{R\left(t^{\prime}\right)}{c}$
then $\quad d t^{\prime \prime}=d t^{\prime}+\frac{1}{c} \dot{R}\left(t^{\prime}\right) d t^{\prime}$
Velocity $\quad \vec{u}\left(t^{\prime}\right)=\dot{\vec{r}}_{0}(t)$

$$
\begin{aligned}
\dot{\vec{R}}\left(t^{\prime}\right) & =\frac{d}{d t^{\prime}}\left(\vec{r}-\vec{r}_{0}(t)\right) \\
& =-\vec{u}\left(t^{\prime}\right)
\end{aligned}
$$

dot both sides \rightarrow

$$
R^{2}\left(t^{\prime}\right)=\vec{R}^{2}\left(t^{\prime}\right)
$$

$$
2 R\left(t^{\prime}\right) \dot{R}\left(t^{\prime}\right)=-2 \vec{R}\left(t^{\prime}\right) \cdot \vec{u}\left(t^{\prime}\right)
$$

Also define unit vector

$$
\vec{n}=\frac{\vec{R}}{R}
$$

$$
\xrightarrow{\longrightarrow} d t^{\prime \prime}=d t^{\prime}+\frac{1}{c} \dot{R}\left(t^{\prime}\right) d t^{\prime}
$$

$$
=\left[1+\frac{1}{c} \dot{R}\left(t^{\prime}\right)\right] d t^{\prime}
$$

$$
=\left[1-\frac{1}{c} \vec{n}\left(t^{\prime}\right) \cdot \vec{u}\left(t^{\prime}\right)\right] d t^{\prime}
$$

$$
\phi(\vec{r}, t)=q \int \frac{R^{-1}\left(t^{\prime}\right)}{1-\frac{1}{c} \vec{n}\left(t^{\prime}\right) \cdot \vec{u}\left(t^{\prime}\right)} \delta\left(t^{\prime \prime}\right) d t^{\prime \prime}
$$

This means evaluate integral at $\mathrm{t}^{\prime \prime}=0$, or $\mathrm{t}^{\prime}=\mathrm{t}$ (retard)

So...

$$
\phi(\vec{r}, t)=\frac{q}{\kappa\left(t_{\text {retard }}\right) R\left(t_{\text {retard }}\right)}
$$

where

$$
\kappa\left(t_{\text {retard }}\right)=\kappa\left(t^{\prime}\right)=1-\frac{1}{c} \vec{n}\left(t^{\prime}\right) \cdot \vec{u}\left(t^{\prime}\right) \quad \text { beaming factor }
$$

or, in the bracket notation:

$$
\phi(\vec{r}, t)=\left[\frac{q}{\kappa R}\right]
$$

Liénard-Wiechart scalar potential

Similarly, one can show for the vector potential:

$$
\vec{A}=\left[\frac{q \vec{u}}{c \kappa R}\right]
$$

Liénard-Wiechart vector potential

Given the potentials

$$
\phi(\vec{r}, t)=\left[\frac{q}{\kappa R}\right]
$$

$$
\vec{A}=\left[\frac{q \vec{u}}{c \kappa R}\right]
$$

one can use

$$
\vec{B}=\nabla \times \vec{A} \quad \vec{E}=-\nabla \phi-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}
$$

to derive E and B .
We'll skip the math and just talk about the result. (see Jackson §14.1)

The Result: The E, B field at point r and time t depends on the retarded position $r(r e t)$ and retarded time $t(r e t)$ of the charge.

Let

$$
\begin{array}{lc}
\vec{u}=\dot{\vec{r}}_{0}\left(t_{\text {ret }}\right) & \text { velocity of charged particle } \\
\dot{\vec{u}}=\ddot{\vec{r}}_{0}\left(t_{\text {ret }}\right) & \text { acceleration } \\
\vec{\beta} \equiv \frac{\vec{u}}{c} & \kappa \equiv 1-\vec{n} \cdot \vec{\beta} \\
& \quad B(r, t)= \\
& {[n \times \dot{R}(r, t)]}
\end{array}
$$

Field of particle w/ constant velocity
Transverse field due to acceleration

Qualitative Picture:

Figure 3.2 Graphical demonstration of the $1 / R$ acceleration field. Charged particle moving at uniform velocity in positive x direction is stopped at $x=0$ and
$t=0$.

