COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

• Using Reduction to prove properties

USING REDUCTION TO PROVE R.E.

<u>Theorem</u>: If L_2 is R.E., and $L_1 \leq L_2$, then L_1 is also R.E.

Proof:

Let L_1 and L_2 be languages over Σ , $L_1 \leq L_2$, and L_2 be R.E.

Because L_2 is R.E, there is a TM T_2 accepting L_2 .

Because $L_1 \leq L_2$, there is a TM T_1 computing a function f such that $w \in L_1 \leftrightarrow f(w) \in L_2$.

USING REDUCTION TO PROVE R.E.

Construct a TM T=T₁ \rightarrow T₂. We show that T accepts L₁.

- If $w \in L_1$, T_1 in T computes $f(w) \in L_2$ and T_2 in T accepts f(w). Thus, T accepts w.
- If w∉L₁, T₁ in T computes f(w)∉L₂ and T₂ in T does not accept (f(w)). Thus, T does not accept w.

Thus, L_1 is also R.E.

USING REDUCTION TO PROVE NON-R.E.

Collorary:

If L_1 is not recursively enumerable, and $L_1 \leq L_2$, then L_2 is not recursively enumerable.

USING REDUCTION TO PROVE CO-R.E.

<u>Theorem</u>: If L_2 is co-R.E., and $L_1 \leq L_2$, then L_1 is also co-R.E.

Proof:

Let L_1 and L_2 be languages over Σ , $L_1 \leq L_2$, and L_2 be co-R.E.

Because L_2 is co-R.E, \overline{L}_2 is R.E.

Because $L_1 \leq L_2$, $\overline{L}_1 \leq \overline{L}_2$. Then, \overline{L}_1 is R.E. Thus, L_1 is co-R.E.

USING REDUCTION TO PROVE NON-CO-R.E.

Collorary:

If L_1 is not co-R.E., and $L_1 \leq L_2$, then L_2 is not co-R.E.

ANOTHER WAY TO PROVE UNDECIDABILITY

Let L1≤L2. If L1 is not recursive / R.E. / co-R.E., then L2 is not recursive / R.E. / co-R.E.

To prove a language L is not recursive:

- 1. Guess where L is (not R.E. or not co-R.E.)
- Choose another non-recursive language R which is of the same type
- 3. Show $R \leq L$.

To prove a language L is not recursive:

- 1. Guess where L is (not R.E. or not co-R.E.)
- 2. If L is not R.E., then show NSA \leq L.
- 3. If L is not co-R.E., then show $SA \leq L$.

GUESS IF IT'S REC., R.E., CO-R.E., OR NEITHER

Given a TM T, *R*.*E*., not co-R.E. o does T get to state q on blank tape? • does T accept ε ? *R.E., not co-R.E.* Neither • does T output 1? Neither o does T accept everything? • is L(T) finite? *Neither*

PROBLEM OF ACCEPTING AN EMPTY STRING

- We will prove that the problem if a TM accepts an empty string is undecidable.
- This problem is corresponding to the following language.
 - Acceptε = {e(M) | M is a TM accepting ε}
- \odot Thus, we will prove that Accept ϵ is not recursive.

ACCEPTE IS NOT RECURSIVE.

Proof:

(Guess Accept_c is in R.E., but not co-R.E.)

• Show $SA \leq Accept\epsilon$

(We want a Turing-computable $f \stackrel{n}{=} f(\langle T \rangle) = \langle M \rangle$ such that

- T accepts $e(T) \rightarrow M$ accepts ϵ
- T does not accept $e(T) \rightarrow M$ does not accept ϵ
- Let f(T)=M is a TM that first writes e(T) after its input and then runs T.
- M writes e(T) after its input. If its input is ε, T has e(T) as input.

ACCEPTE IS NOT CO-R.E.

- Verify that T accepts $e(T) \leftrightarrow M$ accepts ϵ
- M writes e(T) and lets T run. If the input of M is ϵ :
- when T accepts e(T), M accepts ϵ .
- when T doesn't accept e(T), then M doesn't accept ε.

ACCEPTE IS NOT CO-R.E.

- Next, we show that there is a TM TF computing f.
- TF works as follows:
- changes the start state of T in e(T) to a new state
- add e(Write<T>), make its start state the start state of TF, and make the transition from its halt state to T's start state.
- Then, $SA \leq Accept\epsilon$.
- Then, Accept ϵ is not co-R.E, and is not recursive.

HALTING PROBLEM

Problem

- Given a Turing machine T and string z, does T halt on z?
- Given a program P and input z, does P halt on z?

•Language

- Halt = { $w \in \Sigma^*$ | w = e(T)e(z) for a Turing machine T halting on z}.
- Halt = {<T,z> | T is a Turing machine halting on z}.

HALTING PROBLEM IS UNDECIDABLE

Proof:

Let Halt = {<T,z>| T is a Turing machine halting on z}.

(Guess Halt is in R.E., but not co-R.E.) \odot Show SA \leq Halt

(We want a Turing-computable f $\stackrel{n}{=}$ f(<T₁>)=<T₂, z> such that

- T_1 accepts $e(T_1) \rightarrow T_2$ halts on z
- T_1 does not accept $e(T_1) \rightarrow T_2$ does not halt on z

Then, a possible function is $f(\langle T \rangle) = \langle T, e(T) \rangle$ because T accepts $e(T) \leftrightarrow T$ halts on e(T).)

HALTING PROBLEM IS UNDECIDABLE

- Let f(X) = X·e(X). f is Turing-computable because there is a TM that can write an encoding of an input string after the string itself.
- If f(<T>)=<T>·e(<T>), then T accepts e(T)
 ↔T halts on e(T).
- \odot Then, SA \leq Halt, and Halt is not co-R.E. Thus, Halting problem is undecidable.

SOME OTHER UNDECIDABLE PROBLEMS

FINITE

Given a TM T, is L(T) finite?

Guess FINITE is neither R.E. nor co-R.E.

- To assure L(T) is finite, we need to run T on all possible input and count if T accepts a finite number of strings.
- To assure L(T) is infinite, we need to run T on all possible input and count if T accepts an infinite number of strings.

FINITE IS NOT RECURSIVE

Let FINITE={<T>| T is a TM such that L(T) is finite.} Guess FINITE is neither R.E. nor co-R.E. Choose NSA which is not co-R.E. to show that NSA \leq FINITE We want to find a Turing-computable function f such that <T> \in NSA \leftrightarrow f(<T>)=M \in FINITE <T> \in NSA \rightarrow M accepts \emptyset , and thus L(M) is finite.

 $\langle T \rangle \notin NSA \rightarrow M$ accepts Σ^* , and thus L(M) is infinite.

Then, let M=f(<T>) be a TM that runs T on its input, and accepts everything if T halts.

FINITE IS NOT RECURSIVE

Now, we will show that $<T>\in NSA \leftrightarrow <M>\in FINITE$

- If <T>∈NSA, then T does not accept <T>. Then, M does not get to start AccAll. Thus, M accepts nothing and L(M) is finite.
- If <T>∉NSA, then T accepts <T>. Then, M gets pass T, and accept everything. Thus, M accepts everything and L(M) is infinite.

f is Turing-computable. Thus, NSA ≤ FINITE. Since NSA is not Recursive, neither is FINITE.

CHECKLIST

- Prove a language is recursive, R.E., or co-R.E.
- Prove closure properties of these classes of languages
- Prove properties of reduction
- Prove a language is not recursive, not R.E., or not co-R.E.

- Prove a problem is decidable
- Prove a problem is undecidable