


 

Using Reduction to prove properties 



Theorem: If L2 is R.E., and L1L2, then L1 is 
also R.E. 

Proof: 

Let L1 and L2 be languages over , L1L2, 

and L2 be R.E.  

Because L2 is R.E, there is a TM T2 

accepting L2.  

Because L1L2, there is a TM T1 computing a 

function f such that wL1  f(w)L2. 



Construct a TM T=T1T2. We show that T 

accepts L1. 

 If wL1, T1 in T computes f(w)L2 and T2 in T 

accepts f(w). Thus, T accepts w.  

 If wL1, T1 in T computes f(w)L2 and T2 in T 

does not accept (f(w)).  Thus, T does not 

accept w.  

Thus, L1 is also R.E.  



Collorary:  

 If L1 is not recursively enumerable, 

and L1L2, then L2 is not recursively 

enumerable. 

 



Theorem:  If L2 is co-R.E., and L1L2, then 

L1 is also co-R.E. 

Proof: 

Let L1 and L2 be languages over , L1L2, 

and L2 be co-R.E.  

Because L2 is co-R.E,L2 is R.E.   

Because L1L2,L1L2.  Then,L1 is R.E. 

Thus, L1 is co-R.E.  



Collorary:  

 If L1 is not co-R.E., and L1L2, then 

L2 is not co-R.E. 

 



Let L1L2.    
If L1 is not   recursive /  
          R.E. /  
          co-R.E.,  
then L2 is not recursive /  
   R.E. /  
   co-R.E. 

 To prove a language L is not recursive: 

1. Guess where L is (not R.E. or not co-R.E.) 

2. Choose another non-recursive language R which is of the 

same type 

3. Show R  L. 

recursive co-R.E. R.E. 

Neither R.E. nor co-R.E. 



 To prove a language L is not recursive: 

1. Guess where L is (not R.E. or not co-R.E.) 

2. If L is not R.E., then show NSA  L.  

3. If L is not co-R.E., then show SA  L.  

recursive co-R.E. R.E. 

Neither R.E. nor co-R.E. 

NSA SA 



Given a TM T, 

does T  get to state q on blank tape? 

does T accept ? 

does T output 1? 

does T accept everything? 

 is L(T) finite? 

R.E.,  
not co-R.E. 

R.E., not co-R.E. 

Neither 

Neither  

Neither  



We will prove that the problem if a TM 

accepts an empty string is undecidable. 

This problem is corresponding to the 

following language. 

 Accept = {e(M)| M is a TM accepting } 

Thus, we will prove that Accept is not 
recursive. 



Proof: 

(Guess Accept is in R.E., but not co-R.E.) 

 Show SA  Accept 

(We want a Turing-computable f n f(<T>)=<M> such that 

 T accepts e(T)  M accepts  

 T does not accept e(T)  M does not accept  

 Let f(T)=M is a TM that first writes e(T) after its 
input and then runs T.  

 M writes e(T) after its input. If its input is , T 
has e(T) as input.  

Write<T> T M 



Verify that T accepts e(T)  M accepts  

M writes e(T) and lets T run. If the input of 

M is : 

when T accepts e(T), M accepts . 

when T doesn’t accept e(T), then M 

doesn’t accept . 



Next, we show that there is a TM TF 
computing f.  

TF works as follows: 

changes the start state of T in e(T) to a 
new state 

add e(Write<T>), make its start state the 
start state of TF, and make the transition 
from its halt state to T’s start state. 

Then, SA  Accept.  

Then,Accept is not co-R.E, and is not 
recursive.  



Problem 

Given a Turing machine T and string z, 

does T halt on z? 

Given a program P and input z, does P 

halt on z? 

Language 

 Halt = {w*| w=e(T)e(z) for a Turing 

machine T halting on z}. 

 Halt = {<T,z>| T is a Turing machine 

halting on z}. 



Proof: 
Let Halt = {<T,z>| T is a Turing machine 

halting on z}. 
(Guess Halt is in R.E., but not co-R.E.) 
Show SA  Halt 
(We want a Turing-computable f n 

f(<T1>)=<T2 ,z> such that 
 T1 accepts e(T1)  T2 halts on z 
 T1 does not accept e(T1)  T2 does not halt 

on z 
Then, a possible function is f(<T>) = <T, 

e(T)> because T accepts e(T)  T halts on 
e(T).) 



Let f(X) = Xe(X).  f is Turing-computable 
because there is a TM that can write an 
encoding of an input string after the 
string itself.  

 If f(<T>)=<T>e(<T>), then T accepts e(T) 
T halts on e(T). 

Then, SA  Halt, and Halt is not co-R.E. 
Thus, Halting problem is undecidable. 



 FINITE 

 Given a TM T, is L(T) finite? 

Guess FINITE is neither R.E. nor co-R.E. 

 To assure L(T) is finite, we need to run T on 

all possible input and count if T accepts a 

finite number of strings. 

 To assure L(T) is infinite, we need to run T on 

all possible input and count if T accepts an 

infinite number of strings. 



Let FINITE={<T>| T is a TM such that L(T) is finite.} 

Guess FINITE is neither R.E. nor co-R.E. 

Choose NSA which is not co-R.E. to show that NSAFINITE. 

We want to find a Turing-computable function f such that 
<T>NSA  f(<T>)=MFINITE 

<T>NSA M accepts , and thus L(M) is finite.   

<T>NSAM accepts *, and thus L(M) is infinite. 

Then, let M=f(<T>) be a TM that runs T on its input, and 
accepts everything if T halts. 

T AccAll 

M 



Now, we will show that <T>NSA  <M>FINITE 

If <T>NSA, then T does not accept <T>. Then, M does 
not get to start AccAll. Thus, M accepts nothing and 
L(M) is finite. 

If <T>NSA, then T accepts <T>. Then, M gets pass T, and 
accept everything. Thus, M accepts everything and L(M) 
is infinite. 

T AccAll 

M 

f is Turing-computable. 

Thus, NSA  FINITE. 

Since NSA is not  

Recursive, neither is  
FINITE. 



 Prove a language is 

recursive, R.E., or co-R.E. 

 Prove closure properties of 

these classes of languages 

 Prove properties of 

reduction 

 Prove a language is not 

recursive, not R.E., or not 
co-R.E. 

 Prove a problem is 

decidable 

 Prove a problem is 
undecidable 

 


