

Using Reduction to prove properties

Theorem: If L2 is R.E., and L1L2, then L1 is
also R.E.

Proof:

Let L1 and L2 be languages over , L1L2,

and L2 be R.E.

Because L2 is R.E, there is a TM T2

accepting L2.

Because L1L2, there is a TM T1 computing a

function f such that wL1  f(w)L2.

Construct a TM T=T1T2. We show that T

accepts L1.

 If wL1, T1 in T computes f(w)L2 and T2 in T

accepts f(w). Thus, T accepts w.

 If wL1, T1 in T computes f(w)L2 and T2 in T

does not accept (f(w)). Thus, T does not

accept w.

Thus, L1 is also R.E.

Collorary:

 If L1 is not recursively enumerable,

and L1L2, then L2 is not recursively

enumerable.

Theorem: If L2 is co-R.E., and L1L2, then

L1 is also co-R.E.

Proof:

Let L1 and L2 be languages over , L1L2,

and L2 be co-R.E.

Because L2 is co-R.E,L2 is R.E.

Because L1L2,L1L2. Then,L1 is R.E.

Thus, L1 is co-R.E.

Collorary:

 If L1 is not co-R.E., and L1L2, then

L2 is not co-R.E.

Let L1L2.
If L1 is not recursive /
 R.E. /
 co-R.E.,
then L2 is not recursive /
 R.E. /
 co-R.E.

 To prove a language L is not recursive:

1. Guess where L is (not R.E. or not co-R.E.)

2. Choose another non-recursive language R which is of the

same type

3. Show R  L.

recursive co-R.E. R.E.

Neither R.E. nor co-R.E.

 To prove a language L is not recursive:

1. Guess where L is (not R.E. or not co-R.E.)

2. If L is not R.E., then show NSA  L.

3. If L is not co-R.E., then show SA  L.

recursive co-R.E. R.E.

Neither R.E. nor co-R.E.

NSA SA

Given a TM T,

does T get to state q on blank tape?

does T accept ?

does T output 1?

does T accept everything?

 is L(T) finite?

R.E.,
not co-R.E.

R.E., not co-R.E.

Neither

Neither

Neither

We will prove that the problem if a TM

accepts an empty string is undecidable.

This problem is corresponding to the

following language.

 Accept = {e(M)| M is a TM accepting }

Thus, we will prove that Accept is not
recursive.

Proof:

(Guess Accept is in R.E., but not co-R.E.)

 Show SA  Accept

(We want a Turing-computable f n f(<T>)=<M> such that

 T accepts e(T)  M accepts 

 T does not accept e(T)  M does not accept 

 Let f(T)=M is a TM that first writes e(T) after its
input and then runs T.

 M writes e(T) after its input. If its input is , T
has e(T) as input.

Write<T> T M

Verify that T accepts e(T)  M accepts 

M writes e(T) and lets T run. If the input of

M is :

when T accepts e(T), M accepts .

when T doesn’t accept e(T), then M

doesn’t accept .

Next, we show that there is a TM TF
computing f.

TF works as follows:

changes the start state of T in e(T) to a
new state

add e(Write<T>), make its start state the
start state of TF, and make the transition
from its halt state to T’s start state.

Then, SA  Accept.

Then,Accept is not co-R.E, and is not
recursive.

Problem

Given a Turing machine T and string z,

does T halt on z?

Given a program P and input z, does P

halt on z?

Language

 Halt = {w*| w=e(T)e(z) for a Turing

machine T halting on z}.

 Halt = {<T,z>| T is a Turing machine

halting on z}.

Proof:
Let Halt = {<T,z>| T is a Turing machine

halting on z}.
(Guess Halt is in R.E., but not co-R.E.)
Show SA  Halt
(We want a Turing-computable f n

f(<T1>)=<T2 ,z> such that
 T1 accepts e(T1)  T2 halts on z
 T1 does not accept e(T1)  T2 does not halt

on z
Then, a possible function is f(<T>) = <T,

e(T)> because T accepts e(T)  T halts on
e(T).)

Let f(X) = Xe(X). f is Turing-computable
because there is a TM that can write an
encoding of an input string after the
string itself.

 If f(<T>)=<T>e(<T>), then T accepts e(T)
T halts on e(T).

Then, SA  Halt, and Halt is not co-R.E.
Thus, Halting problem is undecidable.

 FINITE

 Given a TM T, is L(T) finite?

Guess FINITE is neither R.E. nor co-R.E.

 To assure L(T) is finite, we need to run T on

all possible input and count if T accepts a

finite number of strings.

 To assure L(T) is infinite, we need to run T on

all possible input and count if T accepts an

infinite number of strings.

Let FINITE={<T>| T is a TM such that L(T) is finite.}

Guess FINITE is neither R.E. nor co-R.E.

Choose NSA which is not co-R.E. to show that NSAFINITE.

We want to find a Turing-computable function f such that
<T>NSA  f(<T>)=MFINITE

<T>NSA M accepts , and thus L(M) is finite.

<T>NSAM accepts *, and thus L(M) is infinite.

Then, let M=f(<T>) be a TM that runs T on its input, and
accepts everything if T halts.

T AccAll

M

Now, we will show that <T>NSA  <M>FINITE

If <T>NSA, then T does not accept <T>. Then, M does
not get to start AccAll. Thus, M accepts nothing and
L(M) is finite.

If <T>NSA, then T accepts <T>. Then, M gets pass T, and
accept everything. Thus, M accepts everything and L(M)
is infinite.

T AccAll

M

f is Turing-computable.

Thus, NSA  FINITE.

Since NSA is not

Recursive, neither is
FINITE.

 Prove a language is

recursive, R.E., or co-R.E.

 Prove closure properties of

these classes of languages

 Prove properties of

reduction

 Prove a language is not

recursive, not R.E., or not
co-R.E.

 Prove a problem is

decidable

 Prove a problem is
undecidable

