COURSE:
THEORY OF

AUTOMATA
COMPUTATION

TOPICS TO BE COVERED

@ Using Reduction to prove properties

USING REDUCTION 1O

Theorem: If L, is R.E., and
also R.E.

Proof:

PROVE R.

<L, then

c.

_, is

Let L, and L, be languages over Z, L,<L,,

and L, be R.E.

Because L, is R.E, thereisa TM T,

accepting L,.

Because L,<L,, there isa TM T, computing a

function f such that wel,

<> f(W) € Lz.

USING REDUCTION TO PROVE R.E.

Construct a TM T=T,—>T,. We show that T
accepts L,.
If wel,, T,in T computes f(w)eL, and T,in T
accepts f(w). Thus, T accepts w.

If wel,, T,in T computes f(w)gL, and T,in T
does not accept (f(w)). Thus, T does not
accept w.

Thus, L, is also R.E.

USING REDUCTION TO PROVEE NON-
R.E.

Collorary:

If L, is not recursively enumerable,
and L,<L,, then L, is not recursively
enumerable.

USING REDUCTION TO PROVE CO-
R.E.

Theorem: If L, is co-R.E., and L<L,, then
L, is also co-R.E.

Proof:

Let L, and L, be languages over Z, L,<L,,
and L, be co-R.E.

Because L, is co-R.E, L, is R.E.

Because L,<L,, L,< L,. Then, L,is R.E.
Thus, L, is co-R.E.

USING REDUCTION TO PROVE NON-
CO-R.E.

Collorary:

If L, is not co-R.E., and L,<L,, then
L, is not co-R.E.

ANOTHER WAY TO PROVE UNDECIDABILI

Let L1<L2.
If L1 is not recursive /
recursive co-R.E. R.E. /
co-R.E.,

then L2 is not recursive

R.E. /
Neither R.E. nor co-R.E. co-R.E.

To prove a language L is not recursive:
1. Guess where L is (not R.E. or not co-R.E.)

2. Choose another non-recursive language R which is of
same type

3. ShowR < L.

ANOTHER WAY TO PROVE UNDECIDABIL

Neither R.E. nor co-R.E.

To prove a language L is not recursive:
1. Guess where L is (not R.E. or not co-R.E.)
2. If Lis not R.E., then show NSA < L.
3. If Lis not co-R.E., then show SA < L.

GUESS IF IT’S REC., R.E., CO-R.E., OR
NEITHER

Given a TM T, R.E..

not co-R.E.

@does T get to state g on blank tape?

R.E., not co-R.E.
@does T accept ¢?

@does T output 12 """

@does T accept everything? "¢’

@1is L(T) finite? Neither

PROBLEM OFF ACCEPTING AN EMPTY
STRING

® We will prove that the problem if a TM
accepts an empty string is undecidable.

® This problem is corresponding to the
following language.
Accepte = {e(M)| M is a TM accepting &}

® Thus, we will prove that Accepte is not
recursive.

ACCEPTe IS NOT RECURSIVE.

Proof:

(Guess Accepte is in R.E., but not co-R.E.)

® Show SA < Accepte

(We want a Turing-computable f f(<T>)=<M> such that
T accepts e(T) > M accepts ¢
T does not accept e(T) — M does not accept ¢

@ Let f(T)=M is a TM that first writes e(T) after its
input and then runs T.

® M writes e(T) after its input. If its inputise, T
has e(T) as input.

__n Ik

ACCEPTe IS NOT CO-R.E.

Verify that T accepts e(T) <> M accepts ¢

M writes e(T) and lets T run. If the input of
M is €:

@when T accepts e(T), M accepts «.

@when T doesn’t accept e(T), then M
doesn’t accept .

ACCEPTe IS NOT CO-R.E.

Next, we show that there isa TM TF
computing f.
TF works as follows:

® changes the start state of T in e(T) to a
new state

@ add e(Write<T>), make its start state the
start state of TF, and make the transition
from its halt state to T’s start state.

Then, SA < Accepte.

Then,Accepte is not co-R.E, and is not
recursive.

HALTING PROBLEM

@Problem

Given a Turing machine T and string z,
does T halt on z?

Given a program P and input z, does P
halt on z?

@Language
Halt = {weX’| w=e(T)e(z) for a Turing
machine T halting on z}.

Halt = {<T,z>| T is a Turing machine
halting on z}.

HALVING PROBLEM IS UNDECIDABLE

Proof:

Let Halt = {<T,z>| T is a Turing machine
halting on z}.

(Guess Halt is in R.E., but not co-R.E.)

® Show SA < Halt
(We want a Turing-computable f D
f(<T,>)=<T, ,z> such that
T, accepts e(T,) —> T, halts on z
T, does not accept e(T,) —» T, does not halt
on z
Then, a possible function is f_§_<T>) = <T,
egh because T accepts e(T) < T halts on
e

HALVING PROBLEM IS UNDECIDABLE

@ Let f(X) = X-e(X). fis Turing-computable
because there is a TM that can write an
encoding of an input string after the
string itself.

@If f(<T>)=<T>-e(<T>), then T accepts e(T)
<~ T halts on e(T).

® Then, SA < Halt, and Halt is not co-R.E.
Thus, Halting problem is undecidable.

SOME OTHER UNDECIDABLE
PROBLEMS

@ FINITE
Given a TM T, is L(T) finite?
Guess FINITE is neither R.E. nor co-R.E.

@ To assure L(T) is finite, we need to run T on

all possible input and count if T accepts a
finite number of strings.

@ To assure L(T) is infinite, we need to run T on

all possible input and count if T accepts an
infinite number of strings.

FINITE IS NOT RECURSIVE

Let FINITE={<T>| T is a TM such that L(T) is finite.}
Guess FINITE is neither R.E. nor co-R.E.
Choose NSA which is not co-R.E. to show that NSA<FINITE

We want to find a Turing-computable function f such that
<T>eNSA < f(<T>)=MeFINITE

<T>eNSA— M accepts J, and thus L(M) is finite.
<T>NSA—M accepts X*, and thus L(M) is infinite.

Then, let M=f(<T>) be a TM that runs T on its input, and
accepts everything if T halts.

—

M

FINITE IS NOT RECURSIVE

Now, we will show that <T>eNSA <> <M>e<FINITE

If <T>eNSA, then T does not accept <T>. Then, M do
not get to start AccAll. Thus, M accepts nothing an
L(M) is finite.

If <T>¢NSA, then T accepts <T>. Then, M gets pass T,

accept everything. Thus, M accepts everything and
is infinite.

f is Turing-computabl
Thus, NSA < FINITE.
Since NSA is not

M Recursive, neither is
FINITE.

CHECKLIST

2 Prove a language is
recursive, R.E., or co-R.E.

2 Prove closure properties of
these classes of languages

0 Prove properties of
reduction

2 Prove a language is not

recursive, not R.E., or not
co-R.E.

2 Prove a problem is
decidable

2 Prove a problem is
undecidable

