COURSE:
THEORY OF

AUTOMATA
COMPUTATION




TOPICS TO BE COVERED

@ Relationship Between the Classes of
Recursively Enumerable and Recursive
_anguages




RELATIONSHIP BETWEEN RE AND
RECURSIVE LANGUAGES

Theorem: If L is a recursive language,
then L is recursively enumerable.

Proof:

Let L be a recursive language over X.
Then, there is a TM T deciding L.
Then, T also accepts L.

Thus, L is recursively enumerable.




RELATIONSHIP BETWEEN RE AND
RECURSIVE LANGUAGES

Theorem: Let L be a language. If L and L are

recursively enumerable, then L is recursive.
Proof:

Let L and L be recursively-enumerable languages over
2

Then, there are a TM T acceptingL, and aTM T
accepting L. -

For any string w in X7, w is either in L or in L.
That is, either T or T must halt on w, fopa‘v—in—i*.'r
We construct an NTM M as follows: \

If wisinL, T halts on w and thus, M accepts w.

If wis notin L, T halts on w and thus, M rejects w.

Then, M computes the characteristic function of L.
Then, L is recursive.

—|




DECISION PROBLEMS

® A decision problem is a prob. whose ans.
is either yes or no

® A yes-instance (or no-instance) of a
problem P is the instance of P whose
answer is yes (or no, respectively)

@ A decision problem P can be encoded by f,
over X as a language {f.(X)| X is a yes-
instance of P}.




ENCODING OF DECISION PROBLEMS

@ls X a prime ?
f1X ] X'is a prime}
@Does TM T accept string e(T)?
fe(T) | Tis a TM accepting string e(T)}
@Does TM T accept string w?
fe(T)e(w) | Tis a TM accepting string w} or
f<T,w> | Tis a TM accepting string w}




DECIDABLE (OR SOLVABLE)
PROBLEMS

Definition:
If f. is a reasonable encoding of a
decision problem P over X, we say P
is decidable (or solvable) if the
associated language {f.(X)| X is a
yes-instance of P} is recursive.

A problem P is undecidable (or
unsolvable) if P is not decidable.




SELF-ACCEPTING

® SA (Self-accepting) = {we{0,1,#,
¥'| w=e(T) for some TM T and

wel(T)}

® NSA (Non-self-accepting) = {we
{0,1,#, ,}| w=e(T) for some TM T
and wegL(T)}

® E (Encoded-TM) = {we{0,1,#, ,}'|
w=e(T) for some TM T}




NSA IS NOT RECURSIVELY
ENUMERABLE

We prove by contradiction.
Assume NSA is recursively enumerable.
Then, there is TM T, such that L(T;)=NSA.
Is e(Ty) in NSA?

If e(T,)eNSA, then e(T,)¢L(T,) by the

definition of NSA But L(T,;)=NSA. Thus,
contradiction.

If e(T,) ¢NSA, then e(T,) €SA and

e(T,)eL(T,) by the definition of SA. But
L(T,)=NSA. Thus, contradiction.

Then, the assumption is false.
That is, NSA is not recursively enumerable.




£ IS RECURSIVE

Theorem: E is recursive.

Proof:
We can construct a regular expression
for E according to the definition of the

encoding function as follows:
R=S1(M#H*
5=0
M=Q,A,Q,A,D
Q=0*
A=0*
D=0+ 00+ 000

Then, E is regular, and thus
recursive.




SA IS RECURSIVELY ENUMERABILE

@ Construct a TM S accepting SA
@ If wisnot e(T) for some TMT, S rejects w.

® Ifwise(T) forsome TMT, S accepts e(T) iff
accepts e(T).

® IS_(S) = {w| w=e(T) for some TM T accepting e(
A

® Then, SA is recursively enumerable.

—E - Encode, +UTM

\ Reject




SA IS NOT RECURSIV

@NSA =E - SA

E

® NSA is not recursively enumerable (from
previous theorem), and thus not

recursive.
® But E is recursive.

® From the closure property, if
are recursive, then L1 - L2 is

@ Using its contrapositive, if L1

L1 and L2
recursive.

- L2 is not

recursive, then L1 or L2 are not recursive.
@ Since NSA is not recursive and E is

recursive, SA is not recursive




CO-R.E.

Definition
®A language L is co-R.E. if its complement
Lis R.E.

@ It does not mean L is not R.E.

Examples:

® SAis R.E. SA= EUNSA is not R.E.
SAis co-R.E., but not R.E.

® NSA is not R.E. NSA= EUSA is R.E.
NSA is co-R.E., but not R.E.

® E is recursive, R.E., and co-R.E.




RELATIONSHIP BETWEEN R.E., CO-R.E. AND
RECURSIVE LANGUAGES

Theorem: Let L be any language. L is R.E.
and co-R.E. iff L is recursive.

Proof:

® (=) Let L be R.E. and co-R.E. Then, Lis
R.E. Thus, L is recursive.

@ («) Let L be recursive. Then, L is R.E.
From the closure under complementation
of the class of recursive languages, L is

also recursive. Then, L is also R.E. Thus,
L is co-R.E.




OBSERVATION

@ A language L is either
recursive
R.E., bot not recursive

co-R.E., but not recursive
Neither R.E. nor co-R.E.

recursive ) co-R.E.

Neither R.E. nor co-R.E.




REDUCTION

Definition:
Let L, and L, be languages over X, and %,,
respectively. L, is (many-one) reducible to
L,, denoted by L.<L,, if thereisa TM M
computing a function f: £,/>%," such that
wel, & f(w)el,.

Definition:
Let P, and P, be problems. P, is (many-one)
reducible to P, if there isa TM M computing

a function f: £,"—>%," such that w is a yes-
instance of P, «& f(w) is a yes-instance of P,.




REDUCTION

Definition:

A function f: £, >, is a Turing-
computable function if there is a Turing
machine computing f.

Definition:
Let L, and L, be languages over X, and
2,, respectively. L, is (many-one)
reducible to L,, denoted by L,<L,, if

there is a Turing-computable function
f: 2, >, such that wel, < f(w)el,.




MEANING OF REDUCTION

P, is reducible to P, if 3 TM M
computmg a function f: = Y, such
that w is a yes-instance 011 P, f(w
a yes-instance of P,.

@If you can map yes-instances of
problem A to yes-instances of problem
B, then

we can solve A if we can solve B

it doesn’t mean we can solve B if we can
solve A

the decidability of B implies the
decidability of A




PROPERTIES OF REDUCTION

Theorem: Let L be a language over X. L<L.

Proof:
Let L be a language over X.
Let f be an identity function from
> Y.
Then, there is a TM computing f.
Because f is an identity function, wel
<~ f(w)=wel.
By the definition, L<L.




PROPERTIES OF REDUCTION

Theorem: LetlL, and L, be languages over %.
If L,<L,, then L,< L,.

Proof:
Let L, and L, be languages over X.
Because L<L,, there is a function f such that
wel, & f(w)el,, and a TM T computing f.
we L, & f(w)e L,.
By the definition, L,< L,.




PROPERTIES OF REDUCTION

Theorem: Let L, L, and L; be languages over X.
If L,<L, and L,<L;, then L,<L,;.

Proof:
Let L,, L, and L; be languages over X.

There is a function f such that wel, & f(w)el,,
and a TM T1 computing f because L,<L,.

There is a function g such that wel, <> g(w)el;,
and a TM T2 computing g because L,<L;.

wel,f(w)el,<g(f(w))el;, and T1>T2
computes g(f(w)).
By the definition, L,<L;.




USING REDUCTION TO PROVE
DECIDABILITY

Theorem: If L, is recursive, and L,<L,, then
L, is also recursive.

Proof:

Let L, and L, be languages over Z, L,<L,,
and L, be recursive.

Because L, is recursive, thereisa TM T,
computing y,,-

Because L,<L,, there isa TM T, computing a
function f such that wel, & f(w)el,.




USING REDUCTION TO PROVE
DECIDABILITY

Construct a TM T=T,—>T,. We show that T
computes y, ;.

If wel,, T,in T computes f(w)eL, and T,in T
computes y,(f(w)), which is 1.

If wel,, T,in T computes f(w) ¢L, and T, in
T computes y,(f(w)), which is 0.

Thus, L, is also recursive.




USING REDUCTION TO PROVE
UNDECIDABILITY

Collorary:

If L, is not recursive, and L<L,, then L, is
not recursive.




