

Relationship Between the Classes of

Recursively Enumerable and Recursive

Languages

Theorem: If L is a recursive language,

then L is recursively enumerable.

Proof:

Let L be a recursive language over .

Then, there is a TM T deciding L.

Then, T also accepts L.

Thus, L is recursively enumerable.

Theorem: Let L be a language. If L andL are
recursively enumerable, then L is recursive.

Proof:

Let L andL be recursively-enumerable languages over
.

Then, there are a TM T accepting L, and a TMT
acceptingL.

For any string w in *, w is either in L or inL.

That is, either T orT must halt on w, for any w in *.

We construct an NTM M as follows:

If w is in L, T halts on w and thus, M accepts w.

If w is not in L,T halts on w and thus, M rejects w.

Then, M computes the characteristic function of L.
Then, L is recursive.

S T

T

accept

reject

A decision problem is a prob. whose ans.

is either yes or no

A yes-instance (or no-instance) of a

problem P is the instance of P whose

answer is yes (or no, respectively)

A decision problem P can be encoded by fe

over  as a language {fe(X)| X is a yes-

instance of P}.

 Is X a prime ?
{1X | X is a prime}

Does TM T accept string e(T)?
{e(T) | T is a TM accepting string e(T)}

Does TM T accept string w?
{e(T)e(w) | T is a TM accepting string w} or

{<T,w> | T is a TM accepting string w}

Definition:

 If fe is a reasonable encoding of a

decision problem P over , we say P

is decidable (or solvable) if the

associated language {fe(X)| X is a

yes-instance of P} is recursive.

 A problem P is undecidable (or

unsolvable) if P is not decidable.

 SA (Self-accepting) = {w{0,1,#,
,}*| w=e(T) for some TM T and

wL(T)}

 NSA (Non-self-accepting) = {w
{0,1,#, ,}*| w=e(T) for some TM T

and wL(T)}

 E (Encoded-TM) = {w{0,1,#, ,}*|
w=e(T) for some TM T}

We prove by contradiction.
Assume NSA is recursively enumerable.
Then, there is TM T0 such that L(T0)=NSA.
Is e(T0) in NSA?

 If e(T0)NSA, then e(T0)L(T0) by the
definition of NSA But L(T0)=NSA. Thus,
contradiction.

 If e(T0) NSA, then e(T0) SA and
e(T0)L(T0) by the definition of SA. But
L(T0)=NSA. Thus, contradiction.

Then, the assumption is false.
That is, NSA is not recursively enumerable.

Theorem: E is recursive.
Proof:
 We can construct a regular expression

for E according to the definition of the
encoding function as follows:

R = S 1 (M #)+

S = 0
M = Q , A , Q , A , D
Q = 0+

A = 0+

D = 0 + 00 + 000

 Then, E is regular, and thus
recursive.

 Construct a TM S accepting SA
 If w is not e(T) for some TM T, S rejects w.
 If w is e(T) for some TM T, S accepts e(T) iff T

accepts e(T).
 L(S) = {w| w=e(T) for some TM T accepting e(T) =

SA.
 Then, SA is recursively enumerable.

E UTM

Reject

Encode

NSA = E – SA

NSA is not recursively enumerable (from
previous theorem), and thus not
recursive.

But E is recursive.

From the closure property, if L1 and L2
are recursive, then L1 - L2 is recursive.

Using its contrapositive, if L1 - L2 is not
recursive, then L1 or L2 are not recursive.

Since NSA is not recursive and E is
recursive, SA is not recursive.

Definition

A language L is co-R.E. if its complement

L is R.E.

 It does not mean L is not R.E.

Examples:

 SA is R.E. SA=ENSA is not R.E.

 SA is co-R.E., but not R.E.

 NSA is not R.E. NSA=ESA is R.E.

 NSA is co-R.E., but not R.E.

 E is recursive, R.E., and co-R.E.

Theorem: Let L be any language. L is R.E.

and co-R.E. iff L is recursive.

Proof:

 () Let L be R.E. and co-R.E. Then, L is

R.E. Thus, L is recursive.

 () Let L be recursive. Then, L is R.E.

From the closure under complementation

of the class of recursive languages,L is

also recursive. Then, L is also R.E. Thus,

L is co-R.E.

recursive co-R.E. R.E.

Neither R.E. nor co-R.E.

 A language L is either

 recursive

 R.E., bot not recursive

 co-R.E., but not recursive

 Neither R.E. nor co-R.E.

Definition:

 Let L1 and L2 be languages over 1 and 2,
respectively. L1 is (many-one) reducible to
L2, denoted by L1L2, if there is a TM M
computing a function f: 1

*2
* such that

wL1  f(w)L2.

Definition:

 Let P1 and P2 be problems. P1 is (many-one)
reducible to P2 if there is a TM M computing
a function f: 1

*2
* such that w is a yes-

instance of P1  f(w) is a yes-instance of P2.

Definition:

A function f: 1
*2

* is a Turing-
computable function if there is a Turing
machine computing f.

Definition:

 Let L1 and L2 be languages over 1 and
2, respectively. L1 is (many-one)
reducible to L2, denoted by L1L2, if
there is a Turing-computable function
f: 1

*2
* such that wL1  f(w)L2.

P1 is reducible to P2 if  TM M
computing a function f: 1

*2
* such

that w is a yes-instance of P1  f(w) is
a yes-instance of P2.

If you can map yes-instances of
problem A to yes-instances of problem
B, then
 we can solve A if we can solve B
 it doesn’t mean we can solve B if we can

solve A
 the decidability of B implies the

decidability of A

Theorem: Let L be a language over . LL.

Proof:

 Let L be a language over .

 Let f be an identity function from
**.

 Then, there is a TM computing f.

 Because f is an identity function, wL
 f(w)=wL.

 By the definition, LL.

Theorem: Let L1 and L2 be languages over .

 If L1L2, thenL1L2.

Proof:

 Let L1 and L2 be languages over .

 Because L1L2, there is a function f such that

wL1  f(w)L2, and a TM T computing f.

 wL1  f(w)L2.

 By the definition,L1L2.

Theorem: Let L1, L2 and L3 be languages over .

 If L1L2 and L2L3, then L1L3.

Proof:

 Let L1, L2 and L3 be languages over .

 There is a function f such that wL1  f(w)L2,

and a TM T1 computing f because L1L2.

 There is a function g such that wL2  g(w)L3,

and a TM T2 computing g because L2L3.

 wL1f(w)L2g(f(w))L3, and T1T2

computes g(f(w)).

 By the definition, L1L3.

Theorem: If L2 is recursive, and L1L2, then

L1 is also recursive.

Proof:

Let L1 and L2 be languages over , L1L2,

and L2 be recursive.

Because L2 is recursive, there is a TM T2

computing L2.

Because L1L2, there is a TM T1 computing a

function f such that wL1  f(w)L2.

Construct a TM T=T1T2. We show that T

computes L1.

 If wL1, T1 in T computes f(w)L2 and T2 in T

computes L2(f(w)), which is 1.

 If wL1, T1 in T computes f(w) L2 and T2 in
T computes L2(f(w)), which is 0.

Thus, L1 is also recursive.

Collorary:

 If L1 is not recursive, and L1L2, then L2 is
not recursive.

