


 

Relationship Between the Classes of 

Recursively Enumerable and Recursive 

Languages 



Theorem: If L is a recursive language, 

then L is recursively enumerable. 

Proof: 

Let L be a recursive language over . 

Then, there is a TM T deciding L. 

Then, T also accepts L. 

Thus, L is recursively enumerable. 



Theorem: Let L be a language. If L andL are 
recursively enumerable, then L is recursive. 

Proof: 

Let L andL be recursively-enumerable languages over 
. 

Then, there are a TM T accepting L, and  a TMT 
acceptingL. 

For any string w in *, w is either in L or inL. 

That is, either T orT must halt on w, for any w in *. 

We construct an NTM M as follows: 

If w is in L, T halts on w and thus, M accepts w. 

If w is not in L,T halts on w and thus, M rejects w. 

Then, M computes the characteristic function of L.  
Then, L is recursive. 
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A decision problem is a prob. whose ans. 

is either yes or no 

A yes-instance (or no-instance) of a 

problem P is the instance of P whose 

answer is yes (or no, respectively) 

A decision problem P can be encoded by fe 

over  as a language {fe(X)| X is a yes-

instance of P}. 



 Is X a prime ?  
{1X | X is a prime} 

Does TM T accept string e(T)? 
{e(T) | T is a TM accepting string e(T)} 

Does TM T accept string w? 
{e(T)e(w) | T is a TM accepting string w} or  

{<T,w> | T is a TM accepting string w} 



Definition: 

 If fe is a reasonable encoding of a 

decision problem P over , we say P 

is decidable (or solvable) if the 

associated language {fe(X)| X is a 

yes-instance of P} is recursive.  

 A problem P is undecidable (or 

unsolvable) if P is not decidable. 



 SA (Self-accepting) = {w{0,1,#, 
,}*| w=e(T) for some TM T and 

wL(T)} 

 NSA (Non-self-accepting) = {w 
{0,1,#, ,}*| w=e(T) for some TM T 

and wL(T)} 

 E (Encoded-TM) = {w{0,1,#, ,}*| 
w=e(T) for some TM T} 



We prove by contradiction. 
Assume NSA is recursively enumerable. 
Then, there is TM T0 such that L(T0)=NSA. 
Is e(T0) in NSA? 

 If e(T0)NSA, then e(T0)L(T0) by the 
definition of NSA  But L(T0)=NSA.  Thus, 
contradiction. 

 If e(T0) NSA, then e(T0) SA and 
e(T0)L(T0) by the definition of SA. But 
L(T0)=NSA. Thus, contradiction. 

Then, the assumption is false. 
That is, NSA is not recursively enumerable. 



Theorem:  E is recursive. 
Proof: 
  We can construct a regular expression 

for E according to the definition of the 
encoding function as follows:  

R = S 1 (M #)+ 

S = 0 
M = Q , A , Q , A , D  
Q = 0+ 

A = 0+ 

D = 0 + 00 + 000 

 Then, E is regular, and thus 
recursive. 



 Construct a TM S accepting SA 
 If w is not e(T) for some TM T, S rejects w. 
 If w is e(T) for some TM T, S accepts e(T) iff T 

accepts e(T). 
 L(S) = {w| w=e(T) for some TM T accepting e(T) = 

SA. 
 Then, SA is recursively enumerable. 
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NSA = E – SA 

NSA is not recursively enumerable (from 
previous theorem), and thus not 
recursive. 

But E is recursive.  

From the closure property, if L1 and L2 
are recursive, then L1 - L2 is recursive. 

Using its contrapositive, if L1 - L2 is not 
recursive, then L1 or L2 are not recursive. 

Since NSA is not recursive and E is 
recursive, SA is not recursive. 



Definition 

A language L is co-R.E. if its complement 

L is R.E. 

 It does not mean L is not R.E. 

Examples: 

 SA is R.E. SA=ENSA is not R.E. 

 SA is co-R.E., but not R.E. 

 NSA is not R.E. NSA=ESA is R.E. 

 NSA is co-R.E., but not R.E. 

 E is recursive, R.E., and co-R.E. 



Theorem:  Let L be any language. L is R.E. 

and co-R.E. iff L is recursive. 

Proof: 

 () Let L be R.E. and co-R.E. Then, L is 

R.E. Thus, L is recursive. 

 () Let L be recursive. Then, L is R.E. 

From the closure under complementation 

of the class of recursive languages,L is 

also recursive.  Then, L is also R.E. Thus, 

L is co-R.E. 



recursive co-R.E. R.E. 

Neither R.E. nor co-R.E. 

 A language L is either 

 recursive 

 R.E., bot not recursive 

 co-R.E., but not recursive 

 Neither R.E. nor co-R.E. 



Definition: 

 Let L1 and L2 be languages over 1 and 2, 
respectively.  L1 is (many-one) reducible to  
L2, denoted by L1L2, if there is a TM M 
computing a function f: 1

*2
* such that 

wL1  f(w)L2. 

Definition: 

 Let P1 and P2 be problems.  P1 is (many-one) 
reducible to  P2 if there is a TM M computing 
a function f: 1

*2
* such that w is a yes-

instance of P1  f(w) is a yes-instance of P2. 



Definition: 

A function f: 1
*2

* is a Turing-
computable function if there is a Turing 
machine computing f. 

Definition: 

 Let L1 and L2 be languages over 1 and 
2, respectively.  L1 is (many-one) 
reducible to  L2, denoted by L1L2, if 
there is a Turing-computable function 
f: 1

*2
* such that wL1  f(w)L2. 



P1 is reducible to  P2 if  TM M 
computing a function f: 1

*2
* such 

that w is a yes-instance of P1  f(w) is 
a yes-instance of P2. 

If you can map yes-instances of 
problem A to yes-instances of problem 
B, then 
 we can solve A if we can solve B 
 it doesn’t mean we can solve B if we can 

solve A 
 the decidability of B implies the 

decidability of A 



Theorem: Let L be a language over . LL. 

Proof: 

 Let L be a language over .  

 Let f be an identity function from 
**.   

 Then, there is a TM computing f.  

 Because f is an identity function, wL 
 f(w)=wL.   

 By the definition, LL. 



Theorem:  Let L1 and L2 be languages over .  

   If L1L2, thenL1L2. 

Proof: 

 Let L1 and L2 be languages over .  

 Because L1L2, there is a function f such that 

wL1  f(w)L2, and a TM T computing f. 

 wL1  f(w)L2. 

 By the definition,L1L2. 



Theorem: Let L1, L2 and L3 be languages over .  

   If L1L2 and L2L3, then L1L3. 

Proof: 

 Let L1, L2 and L3 be languages over .  

 There is a function f such that wL1  f(w)L2, 

and a TM T1 computing f because L1L2. 

 There is a function g such that wL2  g(w)L3, 

and a TM T2 computing g because L2L3. 

 wL1f(w)L2g(f(w))L3, and T1T2 

computes g(f(w)). 

 By the definition, L1L3. 



Theorem: If L2 is recursive, and L1L2, then 

L1 is also recursive. 

Proof: 

Let L1 and L2 be languages over , L1L2, 

and L2 be recursive.  

Because L2 is recursive, there is a TM T2 

computing L2.  

Because L1L2, there is a TM T1 computing a 

function f such that wL1  f(w)L2. 



Construct a TM T=T1T2. We show that T 

computes L1. 

 If wL1, T1 in T computes f(w)L2 and T2 in T 

computes L2(f(w)), which is 1.  

 If wL1, T1 in T computes f(w) L2 and T2 in 
T computes L2(f(w)), which is 0.  

Thus, L1 is also recursive.  



Collorary:  

 If L1 is not recursive, and L1L2, then L2 is 
not recursive. 

 


