COURSE:
 THEORY OF
 AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Relationship Between the Classes of Recursively Enumerable and Recursive Languages

RELATIONSHIP BETWEEN RE AND
RECURSIVE LANGUAGES
Theorem: If L is a recursive language, then L is recursively enumerable.
Proof:
Let L be a recursive language over Σ.
Then, there is a TM T deciding L .
Then, T also accepts L.
Thus, L is recursively enumerable.

Theorem: Let L be a language. If L and \bar{L} are recursively enumerable, then L is recursive. Proof:
Let L and \bar{L} be recursively-enumerable languages over Σ.
Then, there are a TM T accepting L, and a $T M \bar{\top}$ accepting \bar{L}.
For any string w in Σ^{*}, w is either in L or in \bar{L}.
That is, either T or $\overline{\mathrm{T}}$ must halt on w , for $\mathrm{o} \mathrm{S} v$ in $\Sigma \sum^{*} \cdot T \rightarrow$ accept We construct an NTM M as follows: If w is in L, T halts on w and thus, M accepts w. If w is not in L, \bar{T} halts on w and thus, M rejects w. Then, M computes the characteristic function of L.
Then, L is recursive.

DECISION PROBLEMS

- A decision problem is a prob. whose ans. is either yes or no
- A yes-instance (or no-instance) of a problem P is the instance of P whose answer is yes (or no, respectively)
$\odot A$ decision problem P can be encoded by f_{e} over Σ as a language $\left\{f_{e}(X) \mid X\right.$ is a yesinstance of P$\}$.

ENCODING OF DECISION PROBLEMS

- Is X a prime? $\left\{1^{X} \mid X\right.$ is a prime $\}$
- Does TM T accept string e(T)? \{e(T)| T is a TM accepting string e(T)\}
- Does TM T accept string w?
$\{e(T) e(w) \mid T$ is a TM accepting string $w\}$ or $\{<T, w>\mid T$ is a $T M$ accepting string $w\}$

DECIDABLE (OR SOLVABLE)

PROBLEMS

Definition:

If f_{e} is a reasonable encoding of a decision problem P over Σ, we say P is decidable (or solvable) if the associated language $\left\{f_{e}(X) \mid X\right.$ is a yes-instance of $P\}$ is recursive. A problem P is undecidable (or unsolvable) if P is not decidable.

SELF=ACCEPTING

- SA (Self-accepting) $=\{w \in\{0,1, \#$, , $\}^{*} \mid \mathrm{W}=\mathrm{e}(\mathrm{T})$ for some TM T and $w \in L(T)\}$
- NSA (Non-self-accepting) $=\{w \in$ $\{0,1, \#,,\}^{*} \mid \mathrm{w}=\mathrm{e}(\mathrm{T})$ for some TM T and $\mathrm{w} \notin \mathrm{L}(\mathrm{T})\}$
- $E\left(\right.$ Encoded-TM) $=\left\{w \in\{0,1, \#,,\}^{*} \mid\right.$ $\mathrm{w}=\mathrm{e}(\mathrm{T})$ for some $T M T\}$

NSA IS NOT RECURSIVELY
ENUMERABLE
We prove by contradiction.
Assume NSA is recursively enumerable.
Then, there is $T M T_{0}$ such that $L\left(T_{0}\right)=N S A$. Is e $\left(T_{0}\right)$ in NSA?

- If $e\left(T_{0}\right) \in N S A$, then $e\left(T_{0}\right) \notin L\left(T_{0}\right)$ by the definition of NSA But $\mathrm{L}\left(\mathrm{T}_{0}\right)=$ NSA. Thus, contradiction.
- If $\mathrm{e}\left(\mathrm{T}_{0}\right) \notin \mathrm{NSA}$, then $\mathrm{e}\left(\mathrm{T}_{0}\right) \in \mathrm{SA}$ and $e\left(T_{0}\right) \in L\left(T_{0}\right)$ by the definition of SA. But $\mathrm{L}\left(\mathrm{T}_{0}\right)=\mathrm{NSA}$. Thus, contradiction.
Then, the assumption is false.
That is, NSA is not recursively enumerable.

E IS RECURSIVE

Theorem: E is recursive.
Proof:
We can construct a regular expression for E according to the definition of the encoding function as follows:
$\mathrm{R}=\mathrm{S} 1(\mathrm{M} \#)^{+}$
$\mathrm{S}=0$
$M=Q, A, Q, A, D$
$\mathrm{Q}=\mathrm{O}^{+}$
$A=0^{+}$
$\mathrm{D}=0+00+000$
Then, E is regular, and thus recursive.

- Construct a TM S accepting SA
- If w is not $e(T)$ for some $T M T, S$ rejects w.
- If w is $e(T)$ for some $T M T, S$ accepts $e(T)$ iff T accepts e(T).
- $L(S)=\{w \mid w=e(T)$ for some $T M T$ accepting $e(T)=$ SA.
- Then, SA is recursively enumerable.

SA IS NOT RECURSIVE

- NSA = E - SA
- NSA is not recursively enumerable (from previous theorem), and thus not recursive.
- But E is recursive.
- From the closure property, if L1 and L2 are recursive, then $\mathrm{L} 1-\mathrm{L} 2$ is recursive.
- Using its contrapositive, if L1-L2 is not recursive, then L1 or L2 are not recursive.
- Since NSA is not recursive and E is recursive, SA is not recursive.

CO-R.E.

Definition

๑A language L is co-R.E. if its complement L is R.E.

- It does not mean L is not R.E.

Examples:
$\odot S A$ is R.E. $\bar{S} A=\bar{E} \cup N S A$ is not R.E.

- $\overline{\mathrm{S}} A$ is co-R.E., but not R.E.
- NSA is not R.E. $\bar{N} S A=\overline{\mathrm{E}} \cup S A$ is R.E.
- NSA is co-R.E., but not R.E.
$\odot E$ is recursive, R.E., and co-R.E.

RELATIONSHIIP BETWEEN R.E., CO=R.E.AND RECURSIVE LANGUAGES

Theorem: Let L be any language. L is R.E. and co-R.E. iff L is recursive.
Proof:
$\bigcirc(\rightarrow)$ Let L be R.E. and co-R.E. Then, \bar{L} is R.E. Thus, L is recursive.
$\odot(\leftarrow)$ Let L be recursive. Then, L is R.E. From the closure under complementation of the class of recursive languages, $\overline{\mathrm{L}}$ is also recursive. Then, $\overline{\mathrm{L}}$ is also R.E. Thus, L is co-R.E.

OBSERVATION

- A language L is either
- recursive
- R.E., bot not recursive
- co-R.E., but not recursive
- Neither R.E. nor co-R.E.

REDUCTION

Definition:
Let L_{1} and L_{2} be languages over Σ_{1} and Σ_{2}, respectively. L_{1} is (many-one) reducible to L_{2}, denoted by $L_{1} \leq L_{2}$, if there is a TM M computing a function f: $\Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that $\mathrm{w} \in \mathrm{L}_{1} \leftrightarrow \mathrm{f}(\mathrm{w}) \in \mathrm{L}_{2}$.
Definition:
Let P_{1} and P_{2} be problems. P_{1} is (many-one) reducible to P_{2} if there is a TM M computing a function $\mathrm{f}: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that w is a yesinstance of $P_{1} \leftrightarrow f(w)$ is a yes-instance of P_{2}.

REDUCTION
Definition:
A function $\mathrm{f}: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ is a Turingcomputable function if there is a Turing machine computing f .
Definition:
Let L_{1} and L_{2} be languages over Σ_{1} and Σ_{2}, respectively. L_{1} is (many-one) reducible to L_{2}, denoted by $L_{1} \leq L_{2}$, if there is a Turing-computable function $\mathrm{f}: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that $\mathrm{w} \in \mathrm{L}_{1} \leftrightarrow \mathrm{f}(\mathrm{w}) \in \mathrm{L}_{2}$.

MEANING OF REDUCTION
P_{1} is reducible to P_{2} if \exists TM M
computing a function $\mathrm{f}: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that w is a yes-instance of $P_{1} \leftrightarrow f(w)$ is a yes-instance of P_{2}.
o If you can map yes-instances of problem A to yes-instances of problem B, then
we can solve A if we can solve B

- it doesn't mean we can solve B if we can solve A
- the decidability of B implies the decidability of A

PROPERTIES OF REDUCTION
Theorem: Let L be a language over $\Sigma . L \leq L$. Proof:

Let L be a language over Σ.
Let f be an identity function from $\Sigma^{*} \rightarrow \Sigma^{*}$.
Then, there is a TM computing f . Because f is an identity function, $w \in L$ $\leftrightarrow f(w)=w \in L$. By the definition, $L \leq L$.

PROPERTIES OF REDUCTION

Theorem: Let L_{1} and L_{2} be languages over Σ. If $\mathrm{L}_{1} \leq \mathrm{L}_{2}$, then $\overline{\mathrm{L}}_{1} \leq \overline{\mathrm{L}}_{2}$.
Proof:
Let L_{1} and L_{2} be languages over Σ.
Because $L_{1} \leq L_{2}$, there is a function f such that $w \in L_{1} \leftrightarrow f(w) \in L_{2}$, and a TM T computing f.
$w \in \bar{L}_{1} \leftrightarrow f(w) \in \bar{L}_{2}$.
By the definition, $\bar{L}_{1} \leq \bar{L}_{2}$.

PROPERTIES OF REDUCTION

Theorem: Let L_{1}, L_{2} and L_{3} be languages over Σ. If $\mathrm{L}_{1} \leq \mathrm{L}_{2}$ and $\mathrm{L}_{2} \leq \mathrm{L}_{3}$, then $\mathrm{L}_{1} \leq \mathrm{L}_{3}$.

Proof:

Let $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} be languages over Σ.
There is a function f such that $w \in L_{1} \leftrightarrow f(w) \in L_{2}$, and a TM T1 computing f because $\mathrm{L}_{1} \leq \mathrm{L}_{2}$.
There is a function g such that $w \in L_{2} \leftrightarrow g(w) \in L_{3}$, and a TM T2 computing g because $\mathrm{L}_{2} \leq \mathrm{L}_{3}$.
$\mathrm{w} \in \mathrm{L}_{1} \leftrightarrow \mathrm{f}(\mathrm{w}) \in \mathrm{L}_{2} \leftrightarrow \mathrm{~g}(\mathrm{f}(\mathrm{w})) \in \mathrm{L}_{3}$, and $\mathrm{T} 1 \rightarrow \mathrm{~T} 2$
computes $g(f(w))$.
By the definition, $\mathrm{L}_{1} \leq \mathrm{L}_{3}$.

USING REDUCTION TO PROVE
 DECIDABILITTY

Theorem: If L_{2} is recursive, and $L_{1} \leq L_{2}$, then L_{1} is also recursive.
Proof:
Let L_{1} and L_{2} be languages over $\Sigma, L_{1} \leq L_{2}$, and L_{2} be recursive.
Because L_{2} is recursive, there is a TM T_{2} computing $\chi_{\text {L2 }}$.
Because $L_{1} \leq L_{2}$, there is a TM T_{1} computing a function f such that $w \in L_{1} \leftrightarrow f(w) \in L_{2}$.

USING REDUCTION TO PROVE DECIDABILITY

Construct a $\mathrm{TM} \mathrm{T}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$. We show that T computes $\chi_{\mathrm{L} 1}$.

- If $w \in L_{1}, T_{1}$ in T computes $f(w) \in L_{2}$ and T_{2} in T computes $\chi_{L_{2}}(f(w))$, which is 1 .
- If $w \notin L_{1}, T_{1}$ in T computes $f(w) \notin L_{2}$ and T_{2} in T computes $\chi_{\mathrm{L} 2}(\mathrm{f}(\mathrm{w}))$, which is 0 .
Thus, L_{1} is also recursive.

USING REDUCTION TO PROVE
 UNDECIDABIL\|TY

Collorary:

If L_{1} is not recursive, and $L_{1} \leq L_{2}$, then L_{2} is not recursive.

