COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

 Relationship Between the Classes of Recursively Enumerable and Recursive Languages

RELATIONSHIP BETWEEN RE AND RECURSIVE LANGUAGES

Theorem: If L is a recursive language, then L is recursively enumerable. Proof:

- Let L be a recursive language over Σ . Then, there is a TM T deciding L.
- Then, There is a right decluring
- Then, T also accepts L.
- Thus, L is recursively enumerable.

RELATIONSHIP BETWEEN RE AND RECURSIVE LANGUAGES

<u>Theorem</u>: Let L be a language. If L and \overline{L} are recursively enumerable, then L is recursive. Proof:

Let L and \overline{L} be recursively-enumerable languages over Σ .

accept

reject

- Then, there are a TM T accepting L, and a TM \overline{T} accepting \overline{L} .
- For any string w in Σ^* , w is either in L or in \overline{L} .

That is, either T or \overline{T} must halt on w, for a S v in $\Sigma^* \cdot T$ We construct an NTM M as follows:

- If w is in L, T halts on w and thus, M accepts w.
- If w is not in L, \overline{T} halts on w and thus, M rejects w.
- Then, M computes the characteristic function of L. Then, L is recursive.

DECISION PROBLEMS

- A decision problem is a prob. whose ans. is either yes or no
- A yes-instance (or no-instance) of a problem P is the instance of P whose answer is yes (or no, respectively)
- A decision problem P can be encoded by f_e over Σ as a language {f_e(X) | X is a yesinstance of P}.

ENCODING OF DECISION PROBLEMS

- Is X a prime ?
 - $\{1^X \mid X \text{ is a prime}\}$
- Does TM T accept string e(T)?
 - {e(T) | T is a TM accepting string e(T)}
- Does TM T accept string w?
 - {e(T)e(w) | T is a TM accepting string w} or {<T,w> | T is a TM accepting string w}

DECIDABLE (OR SOLVABLE) PROBLEMS

Definition:

If f is a reasonable encoding of a decision problem P over Σ , we say P is decidable (or solvable) if the associated language $\{f_{e}(X) \mid X \text{ is a }$ yes-instance of P} is recursive. A problem P is undecidable (or unsolvable) if P is not decidable.

SELF-ACCEPTING

- SA (Self-accepting) = {w∈{0,1,#, ,}* | w=e(T) for some TM T and w∈L(T)}
- NSA (Non-self-accepting) = {w∈ {0,1,#, ,}* | w=e(T) for some TM T and w∉L(T)}
- E (Encoded-TM) = {w∈{0,1,#, ,}*| w=e(T) for some TM T}

NSA IS NOT RECURSIVELY

ENUMERABLE

We prove by contradiction. Assume NSA is recursively enumerable. Then, there is TM T_0 such that $L(T_0)=NSA$. Is $e(T_0)$ in NSA?

- If $e(T_0) \in NSA$, then $e(T_0) \notin L(T_0)$ by the definition of NSA But $L(T_0)=NSA$. Thus, contradiction.
- If $e(T_0) \notin NSA$, then $e(T_0) \in SA$ and $e(T_0) \in L(T_0)$ by the definition of SA. But $L(T_0)=NSA$. Thus, contradiction.

Then, the assumption is false. That is, NSA is not recursively enumerable.

E IS RECURSIVE

Theorem: E is recursive. Proof:

We can construct a regular expression for E according to the definition of the encoding function as follows:

SA IS RECURSIVELY ENUMERABLE

- Construct a TM S accepting SA
- If w is not e(T) for some TM T, S rejects w.
- If w is e(T) for some TM T, S accepts e(T) iff T accepts e(T).
- L(S) = {w | w=e(T) for some TM T accepting e(T) = SA.
- Then, SA is recursively enumerable.

SA IS NOT RECURSIVE

 \odot NSA = E - SA

- NSA is not recursively enumerable (from previous theorem), and thus not recursive.
- But E is recursive.
- From the closure property, if L1 and L2 are recursive, then L1 - L2 is recursive.
- Using its contrapositive, if L1 L2 is not recursive, then L1 or L2 are not recursive.
- Since NSA is not recursive and E is recursive, SA is not recursive.

CO-R.E.

Definition

- A language L is co-R.E. if its complement

 L is R.E.
- It does not mean L is not R.E.
 Examples:
- SA is R.E. $\overline{S}A = \overline{E} \cup NSA$ is not R.E.
 - SA is co-R.E., but not R.E.
- NSA is not R.E. $\overline{N}SA = \overline{E} \cup SA$ is R.E.
 - NSA is co-R.E., but not R.E.
- E is recursive, R.E., and co-R.E.

RELATIONSHIP BETWEEN R.E., CO-R.E. AND RECURSIVE LANGUAGES

Theorem: Let L be any language. L is R.E. and co-R.E. iff L is recursive.

Proof:

- (\rightarrow) Let L be R.E. and co-R.E. Then, \overline{L} is R.E. Thus, L is recursive.
- (←) Let L be recursive. Then, L is R.E.
 From the closure under complementation of the class of recursive languages, L is also recursive. Then, L is also R.E. Thus, L is co-R.E.

OBSERVATION

• A language L is either

- recursive
- R.E., bot not recursive
- co-R.E., but not recursive
- Neither R.E. nor co-R.E.

REDUCTION

Definition:

Let L_1 and L_2 be languages over Σ_1 and Σ_2 , respectively. L_1 is (many-one) reducible to L_2 , denoted by $L_1 \leq L_2$, if there is a TM M computing a function f: $\Sigma_1^* \rightarrow \Sigma_2^*$ such that $w \in L_1 \leftrightarrow f(w) \in L_2$.

Definition:

Let P_1 and P_2 be problems. P_1 is (many-one) reducible to P_2 if there is a TM M computing a function f: $\Sigma_1^* \rightarrow \Sigma_2^*$ such that w is a yesinstance of $P_1 \leftrightarrow f(w)$ is a yes-instance of P_2 .

REDUCTION

Definition:

A function f: $\Sigma_1^* \rightarrow \Sigma_2^*$ is a Turingcomputable function if there is a Turing machine computing f.

Definition:

Let L_1 and L_2 be languages over Σ_1 and Σ_2 , respectively. L_1 is (many-one) reducible to L_2 , denoted by $L_1 \leq L_2$, if there is a Turing-computable function f: $\Sigma_1^* \rightarrow \Sigma_2^*$ such that $w \in L_1 \leftrightarrow f(w) \in L_2$.

MEANING OF REDUCTION

- P₁ is reducible to P₂ if ∃ TM M computing a function f: $\Sigma_1^* \rightarrow \Sigma_2^*$ such that w is a yes-instance of P₁ ↔ f(w) is a yes-instance of P₂.
- If you can map yes-instances of problem A to yes-instances of problem B, then
 - we can solve A if we can solve B
 - it doesn't mean we can solve B if we can solve A
 - the decidability of B implies the decidability of A

PROPERTIES OF REDUCTION

<u>Theorem</u>: Let L be a language over Σ . L \leq L. Proof:

- Let L be a language over Σ .
- Let f be an identity function from $\Sigma^* \rightarrow \Sigma^*$.

Then, there is a TM computing f.

Because f is an identity function, $w \in L$ $\leftrightarrow f(w)=w \in L$.

By the definition, $L \leq L$.

PROPERTIES OF REDUCTION

 $\begin{array}{ll} \underline{\text{Theorem:}} & \text{Let } L_1 \text{ and } L_2 \text{ be languages over } \Sigma. \\ & \text{If } L_1 \leq L_2, \text{ then } \overline{L}_1 \leq \overline{L}_2. \end{array}$

Proof:

Let L_1 and L_2 be languages over Σ . Because $L_1 \leq L_2$, there is a function f such that $w \in L_1 \leftrightarrow f(w) \in L_2$, and a TM T computing f. $w \in \overline{L}_1 \leftrightarrow f(w) \in \overline{L}_2$. By the definition, $\overline{L}_1 \leq \overline{L}_2$.

PROPERTIES OF REDUCTION

 $\begin{array}{ll} \underline{\text{Theorem:}} & \text{Let } L_1, \ L_2 \ \text{and} \ L_3 \ \text{be languages over} \ \Sigma. \\ & \text{If } \ L_1 {\leq} L_2 \ \text{and} \ L_2 {\leq} L_3, \ \text{then} \ L_1 {\leq} L_3. \end{array}$

Proof:

Let L_1 , L_2 and L_3 be languages over Σ . There is a function f such that $w \in L_1 \leftrightarrow f(w) \in L_2$, and a TM T1 computing f because $L_1 \leq L_2$.

There is a function g such that $w \in L_2 \leftrightarrow g(w) \in L_3$, and a TM T2 computing g because $L_2 \leq L_3$.

 $w \in L_1 \leftrightarrow f(w) \in L_2 \leftrightarrow g(f(w)) \in L_3$, and $T1 \rightarrow T2$ computes g(f(w)).

By the definition, $L_1 \leq L_3$.

USING REDUCTION TO PROVE DECIDABILITY

<u>Theorem</u>: If L_2 is recursive, and $L_1 \leq L_2$, then L_1 is also recursive.

Proof:

- Let L_1 and L_2 be languages over Σ , $L_1 \leq L_2$, and L_2 be recursive.
- Because L_2 is recursive, there is a TM T_2 computing χ_{L2} .
- Because $L_1 \leq L_2$, there is a TM T_1 computing a function f such that $w \in L_1 \leftrightarrow f(w) \in L_2$.

USING REDUCTION TO PROVE DECIDABILITY

Construct a TM T=T₁ \rightarrow T₂. We show that T computes χ_{L1} .

- If $w \in L_1$, T_1 in T computes $f(w) \in L_2$ and T_2 in T computes $\chi_{L2}(f(w))$, which is 1.
- If $w \notin L_1$, T_1 in T computes $f(w) \notin L_2$ and T_2 in T computes $\chi_{L2}(f(w))$, which is 0.

Thus, L_1 is also recursive.

USING REDUCTION TO PROVE UNDECIDABILITY

Collorary:

If L_1 is not recursive, and $L_1 \leq L_2$, then L_2 is not recursive.