

Decidability

Decidable/Undecidable problems

 Let T = (Q, , , , s) be a TM.

 T accepts a string w in * if

 (s,w) |-T
* (h, 1) .

 T accepts a language L* if, for any string w

in L, T accepts w.

 For any language L*, the characteristic

function of L is the function L(x) such that

 L(x) = 1 if x L

 L(x) = 0 otherwise

 Example

Let L = { {0,1}* | n1() <n0() <2n1() }, where

nx() is the number of x’s in }.

 L() = 1 if n1() <n0() <2n1()

 L() = 0 otherwise

Let T = (Q, , , , s) be a TM.

T decides a language L* if T

computes the characteristic function of

L.

T decides a language L* if

 for any string w in L, T halts on w with

output 1,

 for any string w inL, T halts on w with

output 0.

1/,R

q2

h

q1

/1

,L
@

/
,R

/,L

S

p1

p4 p2

p3

/@
,R

0

/
,R

0/0,R
1/1,R

/

,L

0/0,L
1/1,L

TM accepting L={0n10n |n0}

If the input x is in L,

T halts with output 1.

If the input x is not in L,
T hangs.

r1
/,L

1/,L
/,L

r2

h

@
/

,R

/0

,L

/,L
0/,L
1/,L

TM decidinging L={0n10n |n0}

Hang when

input = 02n

Hang when input

= 0n+m …0n

Hang when input

= 0n 1 … 0n+m

A language L is recursively enumerable

if there is a Turing machine T accepting

L.

A language L is Turing-acceptable if

there is a Turing machine T accepting

L.

Example:

 {0n10n|n0} is a recursively-

enumerable language.

A language L is recursive if there is a

Turing machine T deciding L.

A language L is Turing-decidable if

there is a Turing machine T deciding

L.

Example:

 {0n10n|n0} is a recursive language.

Theorem: Let L be a recursive language

over . Then,L is recursive.

Proof:

Let L be a recursive language over .

Then, there exists a TM T computing L.

Construct a tape TM M computing L. as follows:

 T TmoveRight
 0 Twrite1

 1 Twrite0

Then,L is recursive.

Theorem: Let L1 and L2 be recursive

languages over . Then, L1L2 is

recursive.

Proof:

Let L1 and L2 be recursive languages over .

Then, there exist TM’s T1 and T2 computing

L1 and L2, respectively.

Construct a 2-tape TM M as follows:

 TcopyTape1ToTape2 T1 TmoveRight
 0 TcopyTape2ToTape1

 T2

 1

 TcopyTape1ToTape2 T1 TmoveRight
 0 TcopyTape2ToTape1

 T2

If the input w is not in L1 and L2, L1(w) and
L2(w)=0. Thus, both T1 and T2 must run, and
M halts with output 0.

If the input w is in L1, L1(w)=1. Thus, M halts
with output 1.

If the input w is not in L1 but is in L2, L1(w)=0
and L2(w)=1. Thus, M halts with output 1.

That is, M computes characteristic function of
L.

Then, L1L2 is recursive.

1

Theorem: Let L1 and L2 be recursive

languages over . Then, L1L2 is

recursive.

Proof:

Let L1 and L2 be recursive languages over .

Then, there exist TM’s T1 and T2 computing

L1 and L2, respectively.

Construct a 2-tape TM M as follows:

 TcopyTape1ToTape2 T1
 TmoveRight

 1 TcopyTape2ToTape1
 T2

 0

 TcopyTape1ToTape2 T1
 TmoveRight

 1 TcopyTape2ToTape1
 T2

If the input w is in L1L2, L1(w) and L2(w)=1.

Thus, M halts with output 1.

If the input w is not in L1, L1(w)=0. Thus, M halts

with output 0.

If the input w is in L1 but is not in L2, L1(w)=1 and

L2(w)=0. Thus, M halts with output 0.

That is, M computes characteristic function of L1L2.

Then, L1L2 is recursive.

0

