COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

• Decidability

• Decidable/Undecidable problems

ACCEPTING: DEFINITION

- Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be a TM.
- *T* accepts a string *w* in Σ^* if $(s,\underline{\Delta}w) \mid T^*(h,\underline{\Delta}1)$.
- T accepts a language $L \subseteq \Sigma^*$ if, for any string w in L, T accepts w.

CHARACTERISTIC FUNCTION

- For any language $L \subseteq \Sigma^*$, the characteristic function of L is the function $\chi_L(x)$ such that
 - $\chi_L(x) = 1$ if $x \in L$
 - $\chi_L(x) = 0$ otherwise

• Example

- Let $L = \{ \omega \in \{0,1\}^* \mid n_1(\omega) < n_0(\omega) < 2n_1(\omega) \}$, where $n_x(\omega)$ is the number of x's in $\omega \}$.
- $\chi_L(\omega) = 1$ if $n_1(\omega) < n_0(\omega) < 2n_1(\omega)$
- $\chi_L(\omega) = 0$ otherwise

DECIDING: DEFINITION

- Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be a TM.
- T decides a language $L \subseteq \Sigma^*$ if T computes the characteristic function of L.
- T decides a language $L \subseteq \Sigma^*$ if
 - for any string w in L, T halts on w with output 1,
 - for any string w in \overline{L} , T halts on w with output 0.

RECURSIVELY ENUMERABLE LANGUAGES

- A language L is recursively enumerable if there is a Turing machine T accepting L.
- A language L is Turing-acceptable if there is a Turing machine T accepting L.

• Example:

 $\{0^n10^n | n \ge 0\}$ is a recursivelyenumerable language.

RECURSIVE LANGUAGES

- A language L is recursive if there is a Turing machine T deciding L.
- A language L is Turing-decidable if there is a Turing machine T deciding L.
- Example:
 - $\{0^n10^n | n \ge 0\}$ is a recursive language.

CLOSURE PROPERTIES OF THE CLASS OF RECURSIVE LANGUAGES

CLOSURE PROPERTY UNDER COMPLEMENTATION

<u>Theorem</u>: Let L be a recursive language over Σ . Then, \overline{L} is recursive.

Proof:

Let L be a recursive language over Σ .

Then, there exists a TM T computing χ_L .

Construct a tape TM M computing $\chi_{\overline{L}}$. as follows:

CLOSURE PROPERTY UNDER UNION

Theorem: Let L_1 and L_2 be recursive languages over Σ . Then, $L_1 \cup L_2$ is recursive.

Proof:

Let L_1 and L_2 be recursive languages over Σ . Then, there exist TM's T_1 and T_2 computing χ_{L1} and χ_{L2} , respectively. Construct a 2-tape TM M as follows:

 $\rightarrow \mathsf{T}_{copyTape1ToTape2} \rightarrow \mathsf{T}_{1} \rightarrow \mathsf{T}_{moveRight} \xrightarrow{0} \mathsf{T}_{copyTape2ToTape1} \rightarrow \mathsf{T}_{2}$

CLOSURE PROPERTY UNDER UNION

$$\rightarrow \mathsf{T}_{\mathsf{copyTape1ToTape2}} \rightarrow \mathsf{T}_1 \rightarrow \mathsf{T}_{\mathsf{moveRight}} \xrightarrow{0} \mathsf{T}_{\mathsf{copyTape2ToTape2}} \rightarrow \mathsf{T}_2$$

- If the input w is not in L₁ and L₂, $\chi_{L1}(w)$ and $\chi_{L2}(w)=0$. Thus, both T₁ and T₂ must run, and M halts with output 0.
- If the input w is in L₁, $\chi_{L1}(w)=1$. Thus, M halts with output 1.
- If the input w is not in L₁ but is in L₂, $\chi_{L1}(w)=0$ and $\chi_{L2}(w)=1$. Thus, M halts with output 1.
- That is, M computes characteristic function of $\chi_L \textbf{.}$
- Then, $L_1 \cup L_2$ is recursive.

CLOSURE PROPERTY UNDER INTERSECTION

Theorem: Let L_1 and L_2 be recursive languages over Σ . Then, $L_1 \cap L_2$ is recursive.

Proof:

Let L_1 and L_2 be recursive languages over Σ . Then, there exist TM's T_1 and T_2 computing χ_{L1} and χ_{L2} , respectively. Construct a 2-tape TM M as follows:

 $\rightarrow T_{copyTape1ToTape2} \rightarrow T_1 \rightarrow T_{moveRight} \xrightarrow{1} \rightarrow T_{copyTape2ToTape1} \rightarrow T_2$

CLOSURE PROPERTY UNDER INTERSECTION

$$\rightarrow \mathsf{T}_{\mathsf{copyTape1ToTape2}} \rightarrow \mathsf{T}_{1} \rightarrow \mathsf{T}_{\mathsf{moveRight}} \xrightarrow{1} \rightarrow \mathsf{T}_{\mathsf{copyTape2ToTape2ToT}} \xrightarrow{1} \rightarrow \mathsf{T}_{2}$$

- If the input w is in $L_1 \cap L_2$, $\chi_{L1}(w)$ and $\chi_{L2}(w)=1$. Thus, M halts with output 1.
- If the input w is not in L₁, $\chi_{L1}(w)=0$. Thus, M halts with output 0.
- If the input w is in L₁ but is not in L₂, $\chi_{L1}(w)=1$ and $\chi_{L2}(w)=0$. Thus, M halts with output 0.

That is, M computes characteristic function of $\chi_{L1 \cap L2}$. Then, $L_1 \cap L_2$ is recursive.