COURSE:
 THEORY OF
 AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Decidability
- Decidable/Undecidable problems

ACCEPTING: DEFINITION

\odot Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM.
$\odot T$ accepts a string w in Σ^{*} if $\left.(s, \underline{\Delta} w)\right|_{T} ^{-*}(h, \underline{\Delta} 1)$.
$\odot T$ accepts a language $L \subseteq \Sigma^{*}$ if, for any string w in L, T accepts w.

CHARACTERISTIC FUNCTION

- For any language $L \subseteq \Sigma^{*}$, the characteristic function of L is the function $\chi_{L}(x)$ such that
- $\chi_{L}(x)=1$ if $x \in L$
- $\chi_{L}(x)=0$ otherwise
- Example

Let $L=\left\{\omega \in\{0,1\}^{*} \mid \mathrm{n}_{1}(\omega)<\mathrm{n}_{0}(\omega)<2 \mathrm{n}_{1}(\omega)\right\}$, where $\mathrm{n}_{\mathrm{x}}(\omega)$ is the number of x 's in $\left.\omega\right\}$.

- $\chi_{L}(\omega)=1$ if $n_{1}(\omega)<n_{0}(\omega)<2 n_{1}(\omega)$
- $\chi_{L}(\omega)=0$ otherwise

DECIDING: DEFINITION

- Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM.
$\odot T$ decides a language $L \subseteq \Sigma^{*}$ if T computes the characteristic function of L.
$\odot T$ decides a language $L \subseteq \Sigma^{*}$ if
- for any string w in L, T halts on w with output 1 ,
- for any string w in \bar{L}, T halts on w with output 0.

RECURSIVELY ENUMERABLE

 LIANGUAGES\bigcirc A language L is recursively enumerable if there is a Turing machine T accepting L.

- A language L is Turing-acceptable if there is a Turing machine T accepting L.
-Example:
$\left\{0^{n} 10^{n} \mid n \geq 0\right\}$ is a recursivelyenumerable language.

RECURSIVE LANGUAGES
© A language L is recursive if there is a Turing machine T deciding L .
$\odot A$ language L is Turing-decidable if there is a Turing machine T deciding L.
-Example:
$\left\{0^{n} 10^{n} \mid n \geq 0\right\}$ is a recursive language.

CLOSURE PROPERTIES OF THE CLASS OF RECURSIVE LANGUAGES

CLOSURE PROPERTV UNDER
COMPLEMENTATIION
Theorem: Let Lbe a recursive language over Σ. Then, $\overline{\mathrm{L}}$ is recursive.
Proof:
Let L be a recursive language over Σ.
Then, there exists a TM T computing χ_{L}.
Construct a tape TM M computing $\chi_{\bar{L}}$. as follows:
$\rightarrow \mathrm{T} \rightarrow \mathrm{T}_{\text {moveRight }} \xrightarrow{0} \mathrm{~T}_{\text {write1 }}$
Then, \bar{L} is recursive.

CLOSURE PROPERTY UNDER UNION
Theorem: Let L_{1} and L_{2} be recursive languages over Σ. Then, $L_{1} \cup L_{2}$ is recursive.
Proof:
Let L_{1} and L_{2} be recursive languages over Σ.
Then, there exist TM's T_{1} and T_{2} computing $\chi_{\mathrm{L} 1}$ and $\chi_{\mathrm{L} 2}$, respectively.
Construct a 2 -tape TM M as follows:
$\rightarrow \mathrm{T}_{\text {copyTape1ToTape2 }} \rightarrow \mathrm{T}_{1} \rightarrow \mathrm{~T}_{\text {moveRight }} \mathrm{t}^{0} \rightarrow \mathrm{~T}_{\text {opyTape2ToTape1 }} \rightarrow \mathrm{T}_{2}$

CLOSURE PROPERIV UNDERUNION

If the input w is not in L_{1} and $L_{2}, \chi_{L 1}(w)$ and $\chi_{\mathrm{L2}}(\mathrm{w})=0$. Thus, both T_{1} and T_{2} must run, and M halts with output 0 .
If the input w is in $L_{1}, \chi_{L 1}(w)=1$. Thus, M halts with output 1.
If the input w is not in L_{1} but is in $L_{2}, \chi_{L 1}(w)=0$ and $\chi_{\mathrm{L} 2}(\mathrm{w})=1$. Thus, M halts with output 1.
That is, M computes characteristic function of χ_{L}.
Then, $L_{1} \cup L_{2}$ is recursive.

CLOSURE PROPERTV UNDER
INTERSECTION
Theorem: Let L_{1} and L_{2} be recursive languages over Σ. Then, $L_{1} \cap L_{2}$ is recursive.

Proof:

Let L_{1} and L_{2} be recursive languages over Σ.
Then, there exist TM's T_{1} and T_{2} computing $\chi_{\mathrm{L} 1}$ and $\chi_{\mathrm{L} 2}$, respectively.
Construct a 2 -tape TM M as follows:
$\rightarrow \mathrm{T}_{\text {copyTape1ToTape2 }} \rightarrow \mathrm{T}_{1} \rightarrow \mathrm{~T}_{\text {moveRight }}{ }^{1} \rightarrow \mathrm{~T}_{\text {copyTape2ToTnge1 }} \rightarrow \mathrm{T}_{2}$

CLOSURE PROPERTY UNDER
INTERSECTION
$\rightarrow \mathrm{T}_{\text {copyTape 1ToTape2 }} \rightarrow \mathrm{T}_{1} \rightarrow \mathrm{~T}_{\text {moveRight }} \xrightarrow{1} \rightarrow \mathrm{~T}_{\text {copyTape2To }} \rightarrow \mathrm{T}_{2}$
If the input w is in $L_{1} \cap L_{2}, \chi_{L 1}(w)$ and $\chi_{L 2}(w)=1$. Thus, M halts with output 1.
If the input w is not in $L_{1}, \chi_{L 1}(w)=0$. Thus, M halts with output 0.
If the input w is in L_{1} but is not in $L_{2}, \chi_{L_{1}}(w)=1$ and $\chi_{\mathrm{L2}}(\mathrm{w})=0$. Thus, M halts with output 0 .
That is, M computes characteristic function of $\chi_{L 1 \cap L 2} \cdot$
Then, $L_{1} \cap L_{2}$ is recursive.

