COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

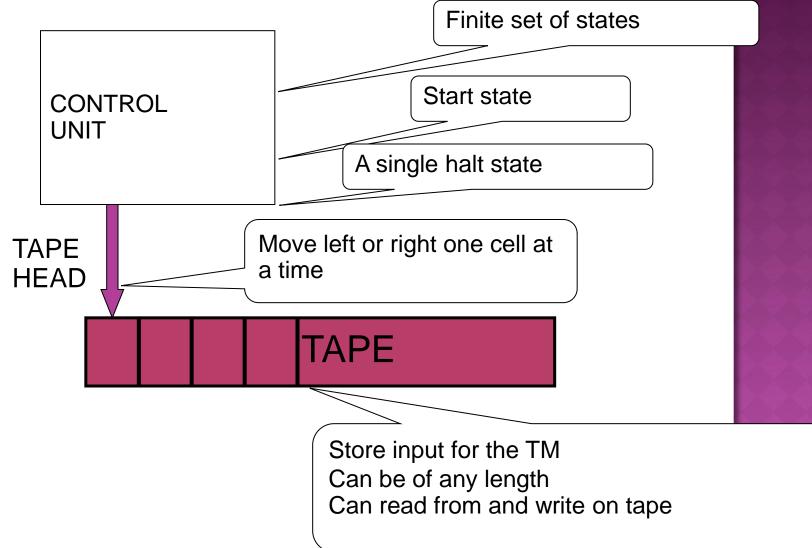
Turing Machines (TM)Model of Computation

OUTLINES

Structure of Turing machines

- Deterministic Turing machines (DTM)
 - Accepting a language
 - Computing a function
- Composite Turing machines
- Multitape Turing machines
- Nondeterministic Turing machines (NTM)
- Our Output of the second se

STRUCTURE OF TM



WHAT DOES A TM DO?

Determine if an input x is in a language.

 That is, answer if the answer of a problem P for the instance x is "yes".

Compute a function

Given an input x, what is f(x)?

HOW DOES A TM WORK?

- •At the beginning,
 - A TM is in the start state (initial state)
 - its tape head points at the first cell
 - The tape contains Δ , following by input string, and the rest of the tape contains Δ .

HOW DOES A TM WORK?

• For each move, a TM

- reads the symbol under its tape head
- According to the *transition function* on the symbol read from the tape and its current state, the TM:
 - o write a symbol on the tape
 - move its tape head to the left or right one cell or not
 - o changes its state to the *next state*

WHEN DOES A TM STOP WORKING?

• A TM stops working,

 when it gets into the special state called halt state. (halts)

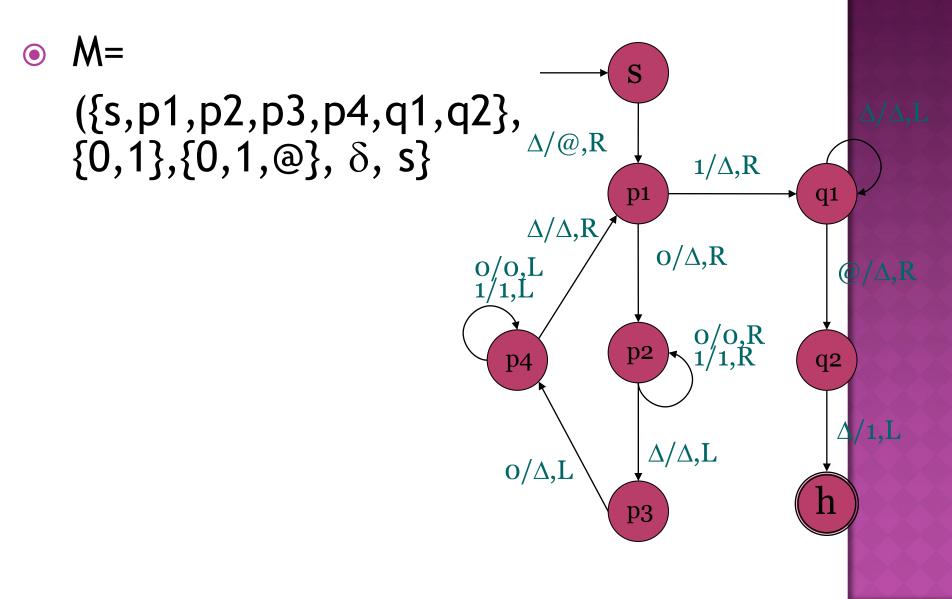
• The output of the TM is on the tape.

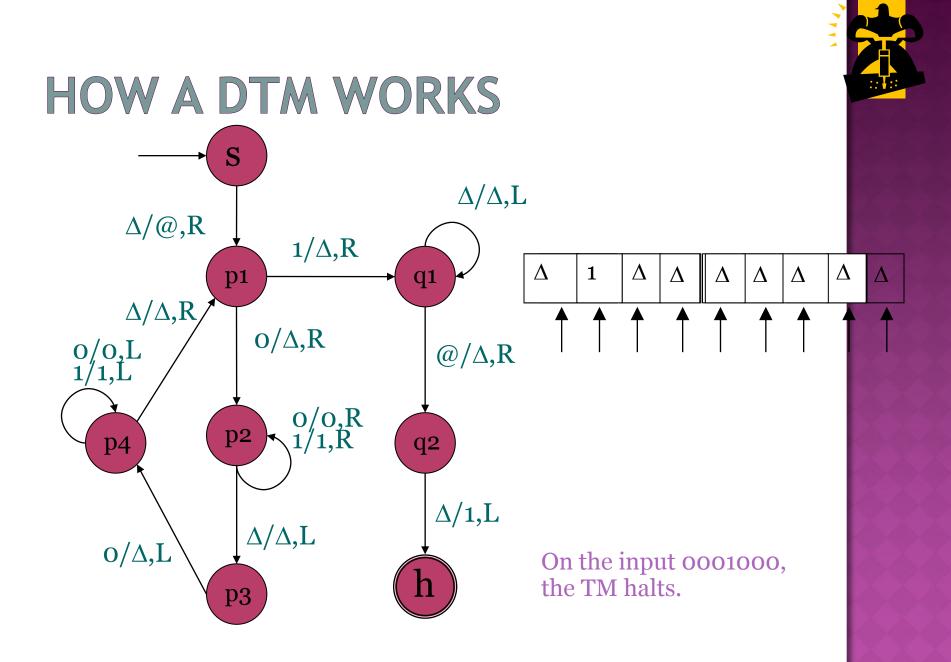
- when the tape head is on the leftmost cell and is moved to the left. (hangs)
- when there is no next state. (hangs)

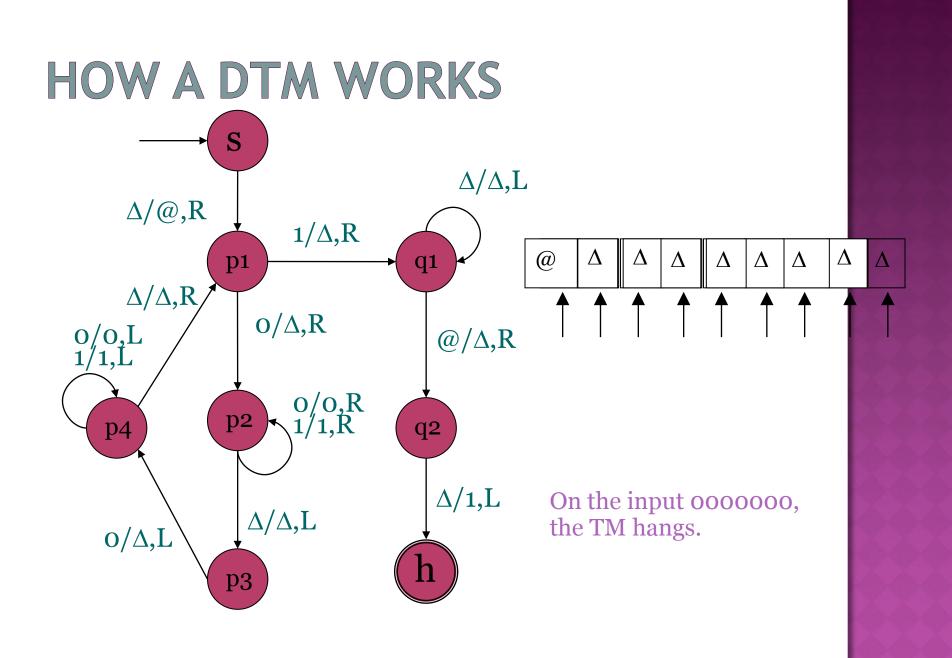
HOW TO DEFINE DETERMINISTIC TM (DTM)

- a quintuple $(Q, \Sigma, \Gamma, \delta, s)$, where
 - the set of states *Q* is finite, not containing halt state *h*,
 - the input alphabet Σ is a finite set of symbols not including the blank symbol Δ ,
 - the tape alphabet Γ is a finite set of symbols containing Σ , but not including the blank symbol Δ ,
 - \odot the start state *s* is in *Q*, and
 - the transition function δ is a partial function from $Q \times (\Gamma \cup \{\Delta\}) \rightarrow Q \cup \{h\} \times (\Gamma \cup \{\Delta\}) \times \{L, R, S\}.$

EXAMPLE OF A DTM



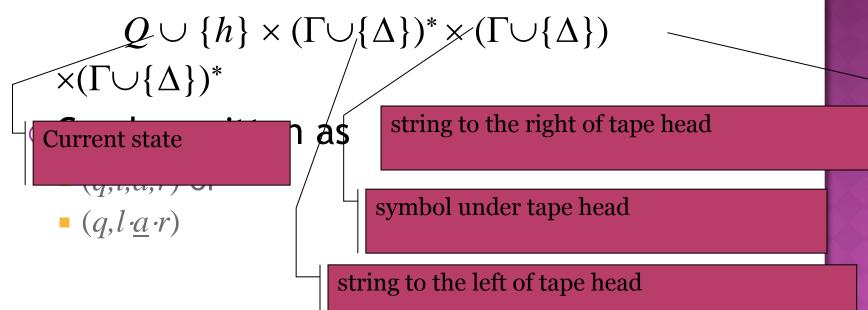




CONFIGURATION

Definition

- Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be a DTM.
 - A configuration of T is an element of



YIELD THE NEXT CONFIGURATION

Definition

• Let
$$T = (Q, \Sigma, \Gamma, \delta, s)$$
 be a DTM, and $(q_{1'} \alpha_1 \underline{a_1} \beta_1)$ and $(q_{2'} \alpha_2 \underline{a_2} \beta_2)$ be two configurations of T .

We say $(q_{1'}, \alpha_{\underline{l}}\underline{a}_{\underline{l}}\beta_{1'})$ yields $(q_{2'}, \alpha_{\underline{l}}\underline{a}_{\underline{l}}\beta_{2'})$ in one step, denoted by $(q_{1'}, \alpha_{\underline{l}}\underline{a}_{\underline{l}}\beta_{1'}) \stackrel{T}{\models} (q_{2'}, \alpha_{\underline{l}}\underline{a}_{\underline{l}}\beta_{2'})$, if

•
$$\delta(q_1, a_1) = (q_2, a_2, s), \alpha_1 = \alpha_2 \text{ and } \beta_1 = \beta_2,$$

•
$$\delta(q_1, a_1) = (q_2, b, \mathbf{R}), \alpha_2 = \alpha_1 b \text{ and } \beta_1 = a_2 \beta_2,$$

YIELD IN ZERO STEP OR MORE Definition

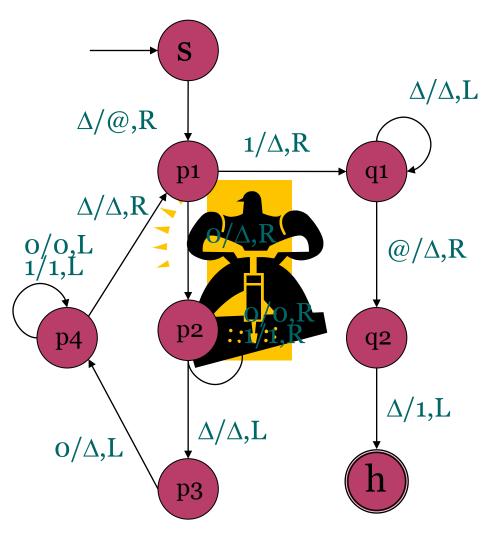
• Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a DTM, and $(q_1, \alpha_1 \underline{a_1} \beta_1)$ and $(q_2, \alpha_2 \underline{a_2} \beta_2)$ be two configurations of T.

We say $(q_{1'}, \alpha_{1}\underline{a_{1}}\beta_{1'})$ yields $(q_{2'}, \alpha_{1}\underline{a_{2}}\beta_{2'})$ in zero step or more, denoted by $(q_{1'}, \alpha_{1}\underline{a_{1}}\beta_{1'}) | -_{T}^{*}$ $(q_{2'}, \alpha_{1}\underline{a_{2}}\beta_{2'})$, if

•
$$q_1 = q_2, \alpha_1 = \alpha_2, a_1 = a_2, \text{and } \beta_1 = \beta_2, \text{ or }$$

• $(q_{1'}\alpha_{1}\underline{a}_{1}\beta_{1'})|_{T}(q, \alpha_{\underline{a}}\beta)$ and $(q, \alpha_{\underline{a}}\beta)|_{T}^{*}$ $(q_{2'}\alpha_{1}\underline{a}_{2}\beta_{2'})$ for some q in Q, α and β in Γ^{*} ,

YIELD IN ZERO STEP OR MORE: EXAMPLE



(s,∆0001000) (p1,@0001000) (p2,@∆001000) (p2,@∆001000∆) (p3,@∆001000) (p4,@∆00100∆) (p4,@<u>∆</u>00100∆) (p1,@∆00100∆) $(p2, @\Delta \Delta 0100\Delta)$ $(p2, @\Delta\Delta 0100\underline{\Delta})$ (p3,@∆∆0100)

(p4,@∆∆010) (p4,@∆∆010) (p1,@∆∆<u>0</u>10) (p2,@∆∆<u>∆1</u>0) (p2,@∆∆<u>∆10</u>) $(p2,@\Delta\Delta\Delta10\Delta)$ (p3,@∆∆<u>∆10</u>) (p4,@∆∆<u>∆1</u>) (p4,@∆∆<u>∆1)</u> (p1,@∆∆<u>∆1</u>) $(q1,@\Delta\Delta\Delta\Delta\Delta)$ (q1,<u>@</u>) (q2,∆<u>∆</u>) (h ,<u>∆</u>1)