COURSE:
 THEORY OF
 AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Turing Machines (TM)
- Model of Computation

OUTLINES

oStructure of Turing machines
-Deterministic Turing machines (DTM)

- Accepting a language
- Computing a function
-Composite Turing machines
-Multitape Turing machines
○Nondeterministic Turing machines (NTM)
○Universal Turing machines (UTM)

STRUCTURE OF TM

Finite set of states

WHAT DOES A TM DO?

oDetermine if an input x is in a language.

- That is, answer if the answer of a problem P for the instance x is "yes".
©Compute a function
- Given an input x, what is $f(x)$?

HOW DOES A TM WORK?

๑At the beginning,
"A TM is in the start state (initial state)

- its tape head points at the first cell
-The tape contains Δ, following by input string, and the rest of the tape contains Δ.

HOW DOES A TM WORK?

-For each move, a TM

- reads the symbol under its tape head
- According to the transition function on the symbol read from the tape and its current state, the TM:
- write a symbol on the tape
- move its tape head to the left or right one cell or not
- changes its state to the next state

WHEN DOES A TM STOP WORKING?

- A TM stops working,
- when it gets into the special state called halt state. (halts)
- The output of the TM is on the tape.
- when the tape head is on the leftmost cell and is moved to the left. (hangs)
- when there is no next state. (hangs)

HOW TO DEFINE DETERMNNISTIC TM (DTTM)

- a quintuple $(Q, \Sigma, \Gamma, \delta, s)$, where

O the set of states Q is finite, not containing halt state h,
O the input alphabet Σ is a finite set of symbols not including the blank symbol Δ,
O the tape alphabet Γ is a finite set of symbols containing Σ, but not including the blank symbol Δ,

- the start state s is in Q, and
\bigcirc the transition function δ is a partial function from $Q \times(\Gamma \cup\{\Delta\}) \rightarrow Q \cup\{h\} \times(\Gamma \cup\{\Delta\}) \times\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}$.

EXAMPLE OF A DTM

- $M=$
(\{s,p1,p2,p3,p4,q1,q2\},
$\{0,1\},\{0,1, @\}, \delta, s\}$

HOW A DTM WORKS

HOW A DTM WORKS

CONFIGURATION

Definition

- Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a DTM.

A configuration of T is an element of

YIELD THE NEXT CONFIGURATION

Definition

\odot Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a DTM, and $\left(q_{l}\right.$ $\left.\alpha_{1} \underline{a}_{\underline{l}} \beta_{1}\right)$ and $\left(q_{2}, \alpha_{2} \underline{a}_{2} \beta_{2}\right)$ be two configurations of T.

We say $\left(q_{1}, \alpha_{1} \underline{a}_{\underline{1}} \beta_{1}\right)$ yields $\left(q_{2}, \alpha_{2} \underline{a}_{2} \beta_{2}\right)$ in one step, denoted by $\left(q_{1}, \alpha_{1} \underline{a}_{l} \beta_{I}\right) \bigsqcup^{T}\left(q_{2}\right.$ $\alpha_{2} \underline{a}_{2} \beta_{2}$, if
$-\delta\left(q_{1}, a_{1}\right)=\left(q_{2}, a_{2}, s\right), \alpha_{1}=\alpha_{2}$ and $\beta_{1}=\beta_{2}$,
$=\delta\left(q_{1}, a_{l}\right)=\left(q_{2}, b, \mathrm{R}\right), \alpha_{2}=\alpha_{l} b$ and $\beta_{I}=a_{2} \beta_{2}$,

YIELD IN ZERO STEP OR MORE

Definition

\odot Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a DTM, and $\left(q_{1}, \alpha_{l} \underline{a}_{l} \beta_{l}\right)$ and ($q_{2}, \alpha_{2} \underline{a}_{2} \beta_{2}$) be two configurations of T.

We say $\left(q_{1}, \alpha_{1} \underline{a_{l}} \beta_{l}\right)$ yields ($q_{2^{\prime}}, \alpha_{1} \underline{a_{2}} \beta_{2}$) in zero step or more, denoted by $\left(q_{1}, \alpha_{1} \underline{a}_{l} \beta_{I}\right) \mid{ }^{*}{ }_{T}$ $\left(q_{2}, \alpha_{1} \underline{a}_{2} \beta_{2}\right)$, if

- $q_{1}=q_{2}, \alpha_{1}=\alpha_{2}, a_{1}=a_{2}$, and $\beta_{l}=\beta_{2}$, or
$=\left.\left(q_{1}, \alpha_{1} \underline{a}_{\underline{l}} \beta_{l}\right)\right|_{T}(q, \alpha \underline{a} \beta)$ and $\left.(q, \alpha \underline{\alpha} \beta)\right)^{*}{ }_{T}$ $\left(q_{2}, \alpha_{2} a_{2} \beta_{2}\right)$ or some q in Q, α and β in Γ^{*},

(p4,@ $\Delta \Delta$-10)
($\mathrm{p} 4, @ \Delta \underline{\Delta} 010$)
($\mathrm{p} 1, @ \Delta \Delta \mathrm{D} 10$)
($\mathrm{p} 2, @ \Delta \Delta \triangle 10$)
($\mathrm{p} 2, @ \Delta \Delta \Delta 10$)
($22, @ \Delta \Delta \Delta 10 \Delta$)
($\mathrm{p} 3, @ \Delta \Delta \triangle 10$)
($\mathrm{p} 4, @ \Delta \Delta \Delta 1$)
(p4,@ $\quad \Delta \Delta \Delta 1$)
($\mathrm{p} 1, @ \Delta \Delta \Delta \underline{1}$)
(q1,@ $\Delta \Delta \Delta \Delta \Delta)$
(q1,@)
($\mathrm{q} 2, \Delta \underline{\text {) }}$)
$(h, \Delta 1)$

