COURSE:
 THEORY OF
 AUTOMATA COMPUTATION

TOPICS TO BE COVERED

-TM accepting a language

TM ACCEPTING A LANGUAGE

\bigcirc Definition Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM, and $w \in \Sigma^{*}$.
T accepts w if $\left.(s, \varepsilon, \Delta, w)\right|_{-} ^{*}(h, \varepsilon, \Delta$, 1).

The language accepted by a TM T, denoted by $L(T)$, is the set of strings accepted by T.
$L(T)=\left\{0^{n} 10^{n} \mid n \geq 0\right\}$

- $\quad T$ halts on $0^{n} 10^{n}$
- T hangs on $0^{n+1} 10^{n}$ at p 3
- T hangs on $0^{n} 10^{n+1}$ at q1
- T hangs on $0^{n} l^{2} 0^{n}$ at q1

$o / \Delta, R$

TM COMPUTING A FUNCTION

-Definition Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM, and f be a function from Σ^{*} to Γ^{*}.
T computes f if, for any string w in Σ^{*},
$\left.(s, \varepsilon, \Delta, w)\right|_{-} ^{*}(h, \varepsilon, \Delta, f(w))$.

EXAMPLE OF TM COMPUTING FUNCTION

EXAMPLE OF TM COMPUTING FUNCTION

COMPOSITE TM

-Let $T 1$ and $T 2$ be TM's.
$\odot T 1 \rightarrow T 2$ means executing $T 1$ until $T 1$ halts and then executing $T 2$.
$\odot T 1-a \rightarrow T 2$ means executing $T 1$ until $T 1$ halts and if the symbol under the tape head when $T 1$ halts is a then executing $T 2$.

NONDETERMINISTIC TM

\odot An NTM starts working and stops working in the same way as a DTM.
-Each move of an NTM can be nondeterministic.

EACH MOVE IN AN NTM

© reads the symbol under its tape head

- According to the transition relation on the symbol read from the tape and its current state, the TM choose one move nondeterministically to:
- write a symbol on the tape
- move its tape head to the left or right one cell or not
- changes its state to the next state

HOW TO DEFINE NONDETERMINISTIC TM (NTM)

- a quintuple ($Q, \Sigma, \Gamma, \delta, s$), where
- the set of states Q is finite, and does not contain halt state h,
- the input alphabet Σ is a finite set of symbols, not including the blank symbol Δ,
- the tape alphabet Γ is a finite set of symbols containing Σ, but not including the blank symbol Δ,
- the start state s is in Q, and
- the transition f^{n}

CONFIGURATION OF AN NTM

Definition

- Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be an TM.

A configuration of T is an element of $Q \times$ $\Gamma^{*} \times \Gamma \times \Gamma^{*}$
-Can be written as
string to the left of tape head

- (q,l,a,
- $(q, l \cdot \underline{a} \cdot r)$
symbol under tape head
string to the right of tape head

YIELD THE NEXT CONFIGURATION

Definition

\odot Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be an NTM, and $\left(q_{1}\right.$, $\left.\alpha_{1} \underline{a}_{\underline{l}} \beta_{1}\right)$ and $\left(q_{2}, \alpha_{2} \underline{a}_{2} \beta_{2}\right)$ be two configurations of T.

We say $\left(q_{1}, \alpha_{1} \underline{a}_{\underline{1}} \beta_{I}\right)$ yields $\left(q_{2}, \alpha_{2} \underline{a}_{\underline{2}} \beta_{2}\right)$ in one step, denoted by $\left(q_{1}, \alpha_{1} \underline{a}_{l} \beta_{l}\right) \longmapsto^{T}\left(q_{2}\right.$ $\alpha_{2} \underline{a}_{\underline{a}} \beta_{2}$, if

- $\left(q_{2}, a_{2}, S\right) \in \delta\left(q_{1}, a_{1}\right), \alpha_{1}=\alpha_{2}$ and $\beta_{1}=\beta_{2}$,
$=\left(q_{2}, b, \mathrm{R}\right) \in \delta\left(q_{1}, a_{1}\right), \alpha_{2}=\alpha_{1} b$ and $\beta_{1}=a_{2} \beta_{2}$,

NTM ACCEPTING A LANGUAGE/COMPUTING A FUNCTION

- Definition

Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be an NTM.
Let $w \in \Sigma^{*}$ and f be a function from Σ^{*} to Γ^{*}.
T accepts w if $\left.(s, \varepsilon, \Delta, w)\right|_{-} ^{*}(h, \varepsilon, \Delta, 1)$.
The language accepted by a TM T, denoted by $L(T)$, is the set of strings accepted by T.
T computes f if, for any string w in $\Sigma^{*},(s$, $\varepsilon, \Delta, w)\left.\right|_{T} ^{-}{ }^{*}(h, \varepsilon, \Delta, f(w))$.

EXAMPLE OF NTM

-Let $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$

