COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Pushdown Automata and Context-Free Languages

NPDAS

- A NPDA (Nondeterministic PushDown Automata) is a 7-tuple $M=(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{s}, \perp, \mathrm{F})$ where

Q is a finite set (the states)
Σ is a finite set (the input alphabet)
Γ is a finite set (the stack alphabet)
$\delta \subseteq(\mathrm{Q} \times(\Sigma \mathrm{U}\{\varepsilon\}) \times \Gamma) \times\left(\mathrm{Q} \times \Gamma^{*}\right)$ is the transition relation
$s \in Q$ is the start state
$\perp \in \Gamma$ is the initial stack symbol
$\mathrm{F} \subseteq \mathrm{Q}$ is the final or accept states

- $\left((p, a, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in \delta$ means that
whenever the machine is in state p reading input symbol a on the input tape and A on the top of the stack, it pops A off the stack, push $B_{1} B_{2} . . B_{k}$ onto the stack (B_{k} first and B_{1} last), move its read head right one cell past the one storing a and enter state q.
$\left((p, \varepsilon, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in \delta$ means similar to $\left((p, a, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in$ δ except that it need not scan and consume any input symbol.

CONFIGURATIONS

© Collection of information used to record the snapshot of an executing NPDA
\bigcirc an element of $\mathrm{Q} \times \Sigma^{*} \times \Gamma^{*}$.

- Configuration $C=(q, x, w)$ means
- the machine is at state q,
- the rest unread input string is x,
- the stack content is w.
- Example. Ene donfiguration (ρ, bagabta; $A B A C \perp$) might describe the situation:

START CONFIGURATION AND THE NEXT CONFIGURATION RELATIONS

- Given a NPDA M and an input string x, the configuration (s, $x, \perp)$ is called the start configuration of NPDA on x.
- $\mathrm{CF}_{\mathrm{M}}=_{\text {def }} \mathrm{Q} \times \Sigma^{*} \times \Gamma^{*}$ is the set of all possible configurations for a NPDA M.
- One-step computation (--> ${ }_{\text {м }}$) of a NPDA:
$(p, a y, A \beta))^{-->}(q, y, \gamma \beta)$ for each $((p, a, A),(q, \gamma)) \in \delta$.
$(p, y, A \beta){ }^{-->}{ }_{M}(q, y, \gamma \beta)$ for each $((p, \varepsilon, A),(q, \gamma)) \in \delta$. (2)
Let the next configuration relation --> ${ }_{M}$ on $\mathrm{CF}_{M}{ }^{2}$ be the set of pairs of configurations satisfying (1) and (2).
-->M describes how the machine can move from one configuration to another in one step. (i.e., C -->M D iff D can be reached from C by executing one instruction) Note: NPDA is nondeterministic in the sense that for each C there may exist multiple D's s.t. C --> ${ }_{\text {m }}$ D.

MULTI-STEP COMPUTATIONS AND ACCEPTANCE

- Given a next configuration relation $-{ }^{->}$м :

Define $-->_{M}$ and $-->_{M}^{*}$ as usual, i.e.,
C -->0 ${ }^{\prime}$ D iff $C=D$.

i.e., --->* ${ }_{M}$ is the ref. and trans. closure of $-->m$.

- Acceptance: When will we say that an input string x is accepted by an NPDA M?
two possible answers:

1. by final states: M accepts $\times($ by final state) iff

$$
(s, x, \perp)--^{*}{ }_{M}(p, \varepsilon, \alpha) \text { for some final state } p \in F \text {. }
$$

2. by empty stack: M accepts x by empty stack iff

$$
(\mathrm{s}, \mathrm{x}, \perp)-\text {->* }_{M}(\mathrm{p}, \varepsilon, \varepsilon) \text { for any state } \mathrm{p} .
$$

Remark: both kinds of acceptance have the same expressive power.

LANGUAGE ACCEPTED BY A NPDAS

$M=(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{s}, \mathrm{F}):$ a NPDA.
The languages accepted by M is defined as follows:

1. accepted by final state:
$L_{f}(M)=\{x \mid M$ accepts x by final state $\}$
2. accepted by empty stack:
$L_{e}(M)=\{x \mid M$ accepts x by empty stack $\}$.
3. Note: Depending on the context, we may sometimes use L_{f} and sometimes use L_{e} as the official definition of the language accepted by a NPDA. I.e., if there is no worry of confusion, we use $L(M)$ instead of $L_{e}(M)$ or $L_{f}(M)$ to denote the language accepted by M.
4. In general $L_{e}(M) \neq L_{f}(M)$.

SOME EXAMPLE NPDAS

Ex 23.1 : M_{1} : A NPDA accepting the set of balanced strings of parentheses
[] by empty stack.
M_{1} requires only one state q and behaves as follows:

1. while input is '[' : push '[' onto the stack ;
2. while input is ']' and top is '[' : pop
3. while input is ' ε ' and top is \perp : pop.

Formal definition: $\mathrm{Q}=\{\mathrm{q}\}, \Sigma=\{[]\},, \Gamma=\{[, \perp\}$,

$$
\text { start state }=\mathrm{q}, \text { initial stack symbol }=\perp
$$

$$
\delta=\{((\mathrm{q},[, \perp),(\mathrm{q},[\perp)), \quad((\mathrm{q},[,[),(\mathrm{q},[[)), \quad / / 1
$$

$$
((\mathrm{q},],[),(\mathrm{q}, \varepsilon)), \quad / / 2
$$

$$
((\mathrm{q}, \varepsilon, \perp),(\mathrm{q}, \varepsilon))\} \quad / / 3
$$

Transition Diagram representation of the program δ :
$\left((p, a A),\left(q, B_{1} \ldots B_{n}\right)\right) \in \delta=>$

- This machine is not deterministic. Why?

(P) $\xrightarrow{a, A / B_{1} \ldots B_{n}}$ (q)

EXAMPLE : EXECUTION SEQUENCES OF

M1

- let input $x=[[[]][]][]$. Then below is a successful computation of M_{1} on x :
- (q, [[[]] []][], \perp) : the start configuration
$\rightarrow \operatorname{ii}_{M}(\mathrm{q}, \quad[[]][]][], \quad[\perp) \quad$ instruction or transition

$\cdots{ }_{M}(q$,	[]] []] [], [[+)	transition (ii)
$\cdots{ }_{\text {M }}(\mathrm{q}$,]] []] [], [[[\perp)	transition (ii)
$\cdots{ }_{\text {- }}(\mathrm{q}$,] []] [], [[+)	transition (iii)
$\cdots{ }_{\text {--> }}(\mathrm{q}$,	[]] [], [transition (iii)
$\cdots{ }_{\text {M }}(\mathrm{q}$,]] [], [[+)	transition (ii)
$\cdots{ }_{\text {-- }}(\mathrm{q}$,] [], [\quad)	transition (iii)
$\cdots{ }_{\text {--> }}(\mathrm{q}$,	[], \perp)	transition (iii)
$\cdots{ }_{\text {M }}(\mathrm{q}$,	[\perp)	transition (i)
$\cdots{ }_{\text {M }}(\mathrm{q}$,	」)	transition (iii)
$\cdots{ }_{\text {- }}^{\text {M }}$ (q,	,)	transition (iv)

FAILURE COMPUTATION OF M1 ON X

- Note besides the above successful computation, there are other computations that fail.
Ex: (q, [[[]] []] [], \perp) : the start configuration
$-->_{M}^{*}(q,[], \quad \perp)$
$-->_{M}$ (q, [],) transition (iv)
a dead state at which the input is not empty and we cannot move further ==> failure!!
Note: For a NPDA to accept a string x, we need only one successful computation (i.e., $\exists \mathrm{D}=(,, \varepsilon, \varepsilon)$ with empty input and stack s.t. $(\mathrm{s}, \mathrm{X}, \perp)--{ }^{*}{ }_{M} \mathrm{D}$.)
- Theorem 1: String $x \in\{[,]\}^{*}$ is balanced iff it is accepted by M_{1} by empty stack.

- Definitions:

1. A string x is said to be pre-balanced if $L(y) \geq R(y)$ for all prefixes y of x.
2. A configuration (q, z, α) is said to be blocked if the pda M cannot use up input z, i.e., there is no state r and stack β such that (q, z, α) $\rightarrow^{*}(r, \varepsilon, \beta)$.

- Facts:

1. If initial configuration (s, z, \perp) is blocked then z is not accepted by M.
2. If $(\mathrm{q}, \mathrm{z}, \alpha)$ is blocked then $(\mathrm{q}, \mathrm{zw}, \alpha)$ is blocked for all $\mathrm{w} \in \mathrm{\Sigma}^{*}$.

Pf: 1. If (s, z, \perp) is blocked, then there is no state p, stack β such that (s, z, \perp)-->* ($\mathrm{p}, \varepsilon, \beta$), and hence z Is not accepted.
2. Assume ($\mathrm{q}, \mathrm{zW}, \alpha$) is not blocked, then there must exists intermediate $\mathrm{cfg}(\mathrm{p}$, $\left.\mathrm{w}, \alpha^{\prime}\right)$ such that $(\mathrm{q}, \mathrm{zw}, \alpha) \rightarrow *\left(\mathrm{p}, \mathrm{w}, \alpha^{\prime}\right) \rightarrow *(\mathrm{r}, \varepsilon, \beta)$. But $(\mathrm{q}, \mathrm{zw}, \alpha) \rightarrow *\left(\mathrm{p}, \mathrm{w}, \alpha^{\prime}\right)$ implies $(\mathrm{q}, \mathrm{z}, \alpha) \rightarrow *(\mathrm{p}, \varepsilon, \alpha)$ and $(\mathrm{q}, \mathrm{z}, \alpha)$ is not blocked.

- Lemma 1: For all strings z, x,
- if z is prebalanced then $(q, z x, \perp)-->^{*}(q, x, \alpha \perp)$ iff $\alpha=[L(z)-R(z)$;
- if z is not prebalanced, (q, z, \perp) is blocked.

Pf: By induction on z.
basic case: $z=\varepsilon$. Then $(q, z x, \perp)=(q, x, \perp) \rightarrow^{0}(q, x, \alpha \perp)$ iff $\alpha=[L(z)-R(z)$.
inductive case: $z=y a$, where a is '[' or ']'.
case 1: $\mathrm{z}=\mathrm{y}$ [.
If y is prebalanced, then so is z. By ind. hyp. $(q, z x, \perp)=\left(q, y[, \perp)-^{->^{*}}(q,[x\right.$, $\left[{ }^{L(y)-R(y)} \perp\right)-->\left(q, x,\left[\left[{ }^{L(y)-R(y) \perp)}=\left(q, x,\left[{ }^{L(z)-R(z)} \perp\right)\right.\right.\right.\right.$.
If y is not prebalanced, then, by ind. hyp., $(\mathrm{q}, \mathrm{y}, \perp)$ is blocked and hence (q , $\mathrm{y}[, \perp)$ is blocked as well.
case 2 : $z=y]$.
If y is not prebalanced, then neither is z. By ind. hyp. (q, y, \perp) is blocked, hence $(\mathrm{q}, \mathrm{y}], \perp$) is blocked
If y is prebalanced and $L(y)=R(y)$. Then z is not prebalanced.
By ind. hyp., if $\left.(\mathrm{q}, \mathrm{y}], \perp)->^{*}(\mathrm{q}],, \alpha \perp\right)$ then $\alpha=[\mathrm{L}(\mathrm{z})-\mathrm{R}(\mathrm{z})=\varepsilon$, but then $(\mathrm{q}],, \perp)$ is blocked. Hence (q, z, \perp) is blocked.

Finally, if y is prebalanced and $L(y)>R(y)$. Then z is prebalanced, and

$$
\begin{aligned}
(q, y] x, \perp) & ->^{*}(q,] x,[L(y)-R(y) \perp) \\
& \cdots(q) \text { ind. hyp } \\
& =(q, x,[L(z)-R(z) \perp)
\end{aligned}
$$

On the other hand, if
$(q, y] x, \perp)->^{*}(q, x, \alpha \perp)$.Then there must exist a $\left.\operatorname{cfg}(q] x,, \beta\right)$ such that $(\mathrm{q}, \mathrm{y}] \mathrm{x}, \perp))^{->^{*}}(\mathrm{q}, \mathrm{Jx}, \beta) \quad->^{*}(\mathrm{q}, \mathrm{x}, \alpha \perp)$.
But then the intructions executed in the last part must be IV* III IV*.

$R(y) \perp$, hence $m=0, n=0$ and $\alpha=[L(y)-R(y)-1 \perp$.

Pf [of theorem 1] : Let x be any string.
If x is balanced, then it is prebalanced and $L(x)-R(x)=0$. Hence, by lemma 1 , $(\mathrm{q}, \mathrm{x} \varepsilon, \perp))^{->^{*}}\left(\mathrm{q}, \varepsilon,\left[^{0} \perp\right){ }^{-->}\right.$iv $(\mathrm{q}, \varepsilon, \varepsilon)$. As a result, x is accepted.
If x is not balanced, it is not prebalanced. Hence, by lemma $1,(q, x, \perp)$ is blocked and is not accepted.

ANOTHER EXAMPLE

- The set $\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is known to be not Context-free but its complement

$$
L_{1}=\{a, b\}^{*}-\left\{w w \mid w \in\{a, b\}^{*}\right\} \text { is. }
$$

Exercise: Design a NPDA to accept L_{1} by empty stack.

Hint: $x \in L_{1}$ iff
(1) $|x|$ is odd or
(2) $x=y a z y b z^{\prime}$ or $y b z y a z^{\prime}$ for some $y, z, z^{\prime} \in\{a, b\}^{*}$ with $|z|=\left|z^{\prime}\right|$, which also means ${ }^{x}=$ yay'ubu' or yby'uau' for some $y, y^{\prime}, u, u^{\prime} \in$ with $|y|=\left|y^{\prime}\right|$ and $|u|=\left|u^{\prime}\right|$.

BOTH TYPESOF ACCEPTANCE

$\bigcirc M=(Q, \Sigma, \Gamma, \delta, s,=F):$ a PDĂ
Let u, t : two new states $\notin \mathrm{Q}$ and

- : a new stack symbol $\notin \Gamma$.
\odot Define a new PDA $M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, s^{\prime}, ~ \bullet, F^{\prime}\right)$ where
- $Q^{\prime}=\mathrm{Q} U\{\mathrm{u}, \mathrm{t}\}, \quad \Gamma^{\prime}=\Gamma \mathrm{U}\{\star\}, \quad \mathrm{s}^{\prime}=\mathrm{u}, \quad \mathrm{F}^{\prime}=\{\mathrm{t}\}$ and
- $\delta^{\prime}=\delta U\{(u, \varepsilon, *)$--> $(s, \perp)\}$ // push \perp and call M
$U\left\{(f, \varepsilon, A)->(t, A) \mid f \in F\right.$ and $\left.A \in \Gamma^{\prime}\right\} /^{*}$ return to M^{\prime} after reaching final states */
$\mathrm{U}\left\{(\mathrm{t}, \varepsilon, \mathrm{A})\right.$--> $\left.(\mathrm{t}, \varepsilon) \mid A \in \Gamma^{\prime}\right\} / /$ pop until EmptyStack
© Diagram form relating M and M^{\prime} : see next slide.
Theorem: $L_{f}(M)=L_{e}\left(M^{\prime}\right)$
pf: M accepts $x=>(s, x, \perp) \quad-->n_{M}(q, \varepsilon, \gamma)$ for some $q \in F$ $=>(\mathrm{u}, \mathrm{x},)^{-->_{M^{\prime}}}(\mathrm{s}, \mathrm{x}, \perp \bullet) \mathrm{-->}_{\mathrm{M}^{\prime}}(\mathrm{q}, \varepsilon, \gamma)^{->_{M^{\prime}}}(\mathrm{t}, \varepsilon, \gamma$
-)
$-->^{*}{ }_{M^{\prime}}(\mathrm{t}, \varepsilon, \varepsilon)=>M^{\prime}$ accepts x by empty stack.

M

M'

*: push \perp and call M

+ : return to t of M' once reaching final states of M
++: pop all stack symbols until emptystack

FROM FINALSTATE TO EMPTYSTACK

Conversely, M' accepts x by empty stack

$$
\begin{aligned}
& \text { (t, } \varepsilon, \varepsilon \text {) for some } q \in F \\
& \Rightarrow \mathrm{y}=\varepsilon \text { since } \mathrm{M}^{\prime} \text { cannot consume any input symbol after it } \\
& \text { enters state } t .=>M \text { accepts } x \text { by final state. }
\end{aligned}
$$

© Define next new PDA M" = ($\left.Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime \prime}, s^{\prime}, ~ \star, F^{\prime}\right)$ where - $Q^{\prime}=\mathrm{Q} U\{u, \mathrm{t}\}, \quad \Gamma^{\prime}=\Gamma \mathrm{U}\{\bullet\}, \quad \mathrm{s}^{\prime}=\mathrm{u}, \quad \mathrm{F}^{\prime}=\{\mathrm{t}\}$ and $=\delta^{\prime \prime}=\delta U\{(u, \varepsilon, *)$--> (s, \perp) \} // push \perp and call M - $\quad \mathrm{U}\{(\mathrm{p}, \varepsilon, *)->(\mathrm{t}, \varepsilon) \mid \mathrm{p} \in \mathrm{Q}\}$ /* * return to M" and accept

- if EmptyStack */
© Diagram form relating M and M ": See slide 15.

FROM EMPTYSTACK TO FINALSTATE

- Theorem: $L_{e}(M)=L_{f}\left(M^{\prime \prime}\right)$.
pf: M accepts $x=>(s, x, \perp) \quad-->{ }^{n} M(q, \varepsilon, \varepsilon)$

$\varepsilon, \varepsilon)$
=> M" accepts x by final state (and empty stack).
Conversely, M" accepts x by final state (and empty stack)
 for
some state q in Q
$=>\mathrm{y}=\varepsilon$ [and STACK $=\varepsilon$] since $\mathrm{M}^{\prime \prime}$ does not consume any input symbol at the last transition ((q, $\left.\varepsilon,)_{\text {) }}(\mathrm{t}, \varepsilon)\right)$
=> M accepts x by empty stack.
QED

FROM EMPTYSTACK TO FINAL STATE (AND EMPTYSTACK)

* : push \perp and call M
+ : if emptystack (i.e.see on stack), then pop \bullet and return to state t of $\mathrm{M}^{\prime \prime}$

EQUIVALENCE OF PDAS AND CFGS

- Every CFL can be accepted by a PDA.
$\odot G=(N, \Sigma, P, S): a C F G$.
- wlog assume all productions of G are of the form:
- A-> $c B_{1} B_{2} B_{3} \ldots B_{k}(k \geq 0)$ and $c \in \Sigma U\{\varepsilon\}$.
- note: 1. A -> ε satisfies such constraint; 2. can require $k \leq 2$.
- Define a PDA M $=(\{q\}, \Sigma, N, \delta, q, S,\{ \})$ from G where
- q is the only state (hence also the start state),
$=\Sigma$, the set of terminal symbols of G, is the input alphabet of M,
- N, the set of nonterminals of G, is the stack alphabet of M,
- S, the start nonterminal of G, is the initial stack symbol of M,
- $\}$ is the set of final states. (hence M accepts by empty stack!!)
- $\delta=\left\{\left((q, c, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \mid A->c B_{1} B_{2} B_{3} \ldots B_{k} \in P\right\}$
$\bullet G: 1 . S-1[B S$
EXAMPL2:S -> [B

3. S-> [SB ==> δ :
4. S-> [S B S
5. B ->]
(q, [, S) --> (q, B S)
(q, [, S) --> (q, B)
$(q,[, S) \cdots(q, S B)$
$(q,[, S) ~-->(q, S B S)$
(q,], B) $->(\mathrm{q}, \varepsilon)$
$\odot L(G)=$ the set of nonempty balanced parentheses.

- leftmost derivation v.s. computation sequence (see next table)

$$
S \text { L-->* }{ }_{G}[[[]][]] \quad<==>(q,[[[]][]], S) \quad->^{*}{ }_{M}(q, \varepsilon, \varepsilon)
$$

rule applied	sentential form of leftmost derivation	configuration of the pda accepting x
	S	(q, $\quad s)^{[[[]][]],}$
3	[S B	$\begin{array}{ll} \hline \mathrm{q},\left[\begin{array}{ll} {[\mathrm{l}} \\ \mathrm{SB} \end{array}\right) \\ \hline \end{array}$
4	[[SBS B	
2	[[[B B S	$\underset{\text { (q, }\left[\begin{array}{ll} \left.\left.\left[\begin{array}{ll} \text { BSB } \end{array}\right]\right][]\right], \\ \hline \end{array}\right]}{ }$
5	[[[] B S B	$\left(\mathrm{q},\left[\mathrm{[}[]_{\mathrm{BSB}}\right) \mathrm{l}\right. \text { []], }$
5	[[[]] S B	$\begin{array}{cc} \hline(\mathrm{q},[[[]] & []], \\ S B) & \end{array}$
2	[[[]] [B B	$\begin{array}{cc} \hline\left(\mathrm{q},[[]]\left[\begin{array}{ll} \mathrm{BB} & \\ \hline \end{array}\right],\right. \\ \hline \end{array}$
5	[[[]] []B	$\begin{array}{cc} (\mathrm{q}, \mathrm{[},[\mathrm{[}][\mathrm{B}] & \mathrm{B}) \\ \hline \end{array}$
5	[[[]] []]	$\left.{ }_{[]]}^{(q,,[[[]]},\right)$

LEFTMOST DERIVATION V.S. COMPUTATION SEQUENCE

Lemma 24.1: For any $z, y \in \Sigma^{*}, \gamma \in N^{*}$ and $A \in N$,

$$
A^{L \ldots->n_{G}} \quad z \gamma \quad \text { iff }(q, z y, A) \quad \cdots n_{M}(q, y, \gamma)
$$

 pf: By ind. on n.
Basis: $\mathrm{n}=0 . \mathrm{A}^{\mathrm{L}-\mathrm{H}_{\mathrm{O}}} \mathrm{z} \gamma \quad$ iff $\quad \mathrm{z}=\varepsilon$ and $\gamma=\mathrm{A}$ iff $(q, z y, A)=(q, y, \gamma) \quad$ iff $\quad(q, z y, A) \cdots{ }_{M}(q, y, \gamma)$
Ind. case: 1. (only-if part)
Suppose $A^{L_{-}>{ }^{n+1} G} \mathbf{z} \gamma$ and $B->C \beta$ was the last rule applied.

Hence ($\mathrm{q}, \mathrm{u} \mathrm{cy}, \mathrm{A}$) $->_{\mathrm{M}}^{\mathrm{m}}(\mathrm{q}, \mathrm{cy}, \mathrm{B} \alpha$) // by ind. hyp.

$$
\text { --> }_{M}(q, y, \beta \alpha) \quad / / \text { since }((q, c, B),(q, \beta)) \in
$$

COMPUTATION SEQUENCE (CONT'D)

 $((q, c, B),(q, \beta)) \in \delta$ is the last transition executed. I.e.,
$(\mathrm{q}, \mathrm{zy}, \mathrm{A}))^{->{ }^{n}}{ }_{M}(\mathrm{q}, \mathrm{cy}, \mathrm{B} \alpha) \boldsymbol{- >}_{M}(\mathrm{q}, \mathrm{y}, \beta \alpha)$ with $\gamma=\beta \alpha$ and $\mathrm{z}=\mathrm{uc}$ for some
u. But then
$A^{L-->n_{G}} u B \alpha \quad / /$ by ind. hyp.,
L--> uc $\beta \alpha=z \gamma$ // since by def. B-> $c \beta \in P$
Hence $A^{\text {L--> }}{ }^{n+1}{ }^{\text {z }} \mathbf{z} \gamma$ QED
Theorem 24.2: $L(G)=L(M)$.
pf: $x \in L(G)$ iff S L-->* ${ }_{G} x$

$$
\begin{aligned}
& \text { iff }(q, x, S) \cdots^{*}{ }_{M}(q, \varepsilon, \varepsilon) \\
& \text { iff } x \in L(M) . \quad \text { QED }
\end{aligned}
$$

SIMULATING PDAS BY CFGS

Claim: Every language accepted by a PDA can be generated by a CFG.

- Proved in two steps:
- 1. Special case : Every PDA with only one state has an equivalent CFG
- 2. general case: Every PDA has an equivalent CFG.
- Corollary: Every PDA can be minimized to an equivalent PDA with only one state.
pf: M : a PDA with more than one state.

1. apply step 2 to find an equivalent CFG G
2. apply theorem 24.2 on G, we find an equivalent PDA with only one state.

PDA WITH ONLY ONE STATE HAS AN EQUIVALENT CFG.

$\bigcirc M=(\{s\}, \Sigma, \Gamma, \delta, s, \perp,\{ \}):$ a PDA with only one state.
Define a CFG G $=(\Gamma, \Sigma, \mathrm{P}, \perp)$ where

$$
P=\{A->c \beta \mid((q, c, A),(q, \beta)) \in \delta\}
$$

Note: $M==>G$ is just the inverse of the transformation :

G ==> M defined at slide 16.

Theorem: $L(G)=L(M)$.
Pf: Same as the proof of Lemma 24.1 and Theorem
24.2.

SIMULATING GENERAL PDAS BY CFGS

- How to simulate arbitrary PDA by CFG ?
- idea: encode all state/stack information in nonterminals !!

Wlog, assume $M=(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{s}, \perp,\{\mathrm{t}\})$ be a PDA with only one final state and M can empty its stack before it enters its final state. (The general pda at slide 15 satisfies such constraint.)

Let $\mathrm{N} \subseteq \mathrm{Q} \times \Gamma^{*} \times \mathrm{Q}$. Elements of N are written as <pABCq>.
Define a CFG G = (N, $\Sigma,<\mathrm{s} \perp \mathrm{t}\rangle, \mathrm{P})$ where
$P=\left\{\left\langle p A r>\rightarrow c<q B_{1} B_{2} \ldots B_{k} r>\right.\right.$

U Rules for nonterminals $<q B_{1} B_{2} \ldots B_{k} r>$

RULES FOR <Q $B_{1} B_{2} \ldots B_{k} R>$

We want $<q B_{1} \ldots \mathrm{~B}_{\mathrm{k}} \mathrm{r}>$ to simulate the computation process in PDA M:
$\left(q, \underline{w} y, \underline{B}_{1} \underline{B}_{2} \ldots \underline{B}_{k} \beta\right)|-\ldots|-(r, y, \beta)$ iff $\left\langle q B_{1} \ldots B_{k} r>\rightarrow^{*} w\right.$.
Hence: if $k=0$. ie., $\left\langle q B_{1} B_{2} \ldots B_{k} r>=<q \varepsilon r>\right.$, we should have

$$
\begin{aligned}
& <q r>\rightarrow \varepsilon \quad \text { if } q=r \text { and } \\
& <q r>\text { has no rule if } q \neq r .
\end{aligned}
$$

If $k>1$. Let $B_{1} B_{2} \ldots B_{k}=B_{1} \Delta_{2}$, then :
$\odot\left\langle q B_{1} \Delta_{2} r>\rightarrow \Sigma_{\mathrm{u} 1 \in \mathrm{Q}}\left\langle q \mathrm{~B}_{1} \mathrm{u}_{1}\right\rangle\left\langle\mathrm{u}_{1} \Delta_{2} r>\right.\right.$

- $\quad \rightarrow \Sigma_{\mathrm{u} 1 \in \mathrm{Q}} \Sigma_{\mathrm{u} 2 \in \mathrm{Q}}<\mathrm{qB}_{1} \mathrm{u}_{1}><\mathrm{u}_{1} \mathrm{~B}_{2} \mathrm{u}_{2}><\mathrm{u}_{2} \Delta_{2} \mathrm{r}>$
$\bigcirc \quad \rightarrow$...
$\odot \rightarrow \Sigma_{\mathrm{u} 1 \in \mathrm{Q}} \Sigma_{\mathrm{u} 2 \in \mathrm{Q}} \ldots<\mathrm{qB}_{1} \mathrm{u}_{1}><\mathrm{u}_{1} \mathrm{~B}_{2} \mathrm{u}_{2}>\ldots<\mathrm{u}_{\mathrm{k}-1} \mathrm{~B}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}><\mathrm{U}_{\mathrm{k}} \Delta_{\mathrm{k}} \mathrm{r}>$
$\odot \rightarrow \Sigma_{\mathrm{u} 1 \in \mathrm{Q}} \Sigma_{\mathrm{u} 2 \in \mathrm{Q}} \ldots<q \mathrm{~B}_{1} \mathrm{u}_{1}><\mathrm{u}_{1} \mathrm{~B}_{2} \mathrm{u}_{2}>\ldots<\mathrm{u}_{\mathrm{k}-1} \mathrm{~B}_{\mathrm{k}} \mathrm{r}>$

$$
c x_{1} x_{2} \ldots
$$

$$
(p, c, A)-->\left(q, B_{1} B_{2} \ldots B_{k}\right)
$$

		B_{k-1}
$\mathrm{a}_{\mathrm{k}-1}$	$\mathrm{Bk}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}-1} \mathrm{t}_{2}$	
t 2	C	t 1
t 1	\perp	t

We want to use <pAq> \rightarrow^{*} w to simulate the computation: $(p, w y, A \beta) \rightarrow{ }^{*}{ }_{M}(q, y, \varepsilon \beta)$ So, if $(\mathrm{p}, \mathrm{c}, \mathrm{A}) \rightarrow_{\mathrm{M}}(\mathrm{q}, \alpha)$ we have rules: $<p A r>\rightarrow c<q \propto r>$ for all states r.

HOW TO DERIVE THE RULE <P A R> \rightarrow C <Q A R>?

How to derive rules for the nonterminal : <q $\alpha \mathrm{r}>$

- case 1: $\alpha=B_{1} B_{2} B_{3} \ldots B_{n}(n>0)$
- $=><q \alpha r>=<q B_{1} Q B_{2} Q_{3} Q \ldots . . . B_{n} r>$
- $=><q \alpha r>\rightarrow<q B_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots$
- $<q_{n-1} B_{n} r>$ for all states $q_{1}, q_{2}, \ldots, q_{n-1}$ in Q.
- case2: $\alpha=\varepsilon$.
- $q=r=><q \alpha r>=\langle q \varepsilon r>\rightarrow \varepsilon$.
- q ! $\mathrm{r}=><\mathrm{q} \varepsilon \mathrm{r}>$ cannot derive any string.
- Then <pAq> $\rightarrow \mathrm{c}<\mathrm{q} q q>=\mathrm{c}$.

SIMULATING PDAS BY CFG (CONT'D)

- Note: Besides storing sate information on the nonterminals, G simulate M by guessing nondeterministically what states M will enter at certain future points in the computation, saving its guesses on the sentential form, and then verifying later that those guesses are correct.
Lemma 25.1: $\left(\mathrm{p}, \mathrm{x}, \mathrm{B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{k}}\right){ }^{-->{ }^{n} \mathrm{M}(\mathrm{q}, \varepsilon, \varepsilon) \quad \text { iff }}$
$\exists q_{1}, q_{2}, \ldots q_{k}(=q)$ such that

$$
<p B_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q>{ }^{L} \rightarrow n_{G} x . \quad\left({ }^{*}\right)
$$

Note: 1 . when $k=0(*)$ is reduced to $\left\langle p q>{ }^{L} \rightarrow{ }^{n}{ }_{G} x\right.$
2. In particular, $(p, x, B)-->{ }^{n} M(q, \varepsilon, \varepsilon)$ iff $<p B q>{ }^{L} \rightarrow{ }_{G} X$.

Pf: by ind. on n . Basis: $\mathrm{n}=0$.
LHS holds iff ($x=\varepsilon, k=0$, and $p=q$) iff RHS holds.

SIMULATING PDAS BY SINGLE-STATE PDAS (CONT'D)

Inductive case:

(=>:) Suppose ($\mathrm{p}, \mathrm{x}, \mathrm{B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{k}}$) $\boldsymbol{- >}^{\mathrm{n}+1} \mathrm{~m}(\mathrm{q}, \varepsilon, \varepsilon)$ and $\left(\left(p, C, B_{1}\right),\left(r, C_{1} C_{2} \ldots C_{m}\right)\right)$ is the first instr. executed. I.e., $\left.\left(p, x, B_{1} B_{2} \ldots B_{k}\right)\right)_{M}\left(r, y, C_{1} C_{2} \ldots C_{m} B_{2} \ldots B_{k}\right) \omega_{M}(q, \varepsilon, \varepsilon)$, where $x=c y$.
By ind. hyp., \exists states $r_{1}, \ldots, r_{m-1},\left(r_{m}=q_{1}\right), q_{2}, \ldots q_{k-1}$ with $<r C_{1} r_{1}><r_{1} C_{2} r_{2}>\ldots<r_{m-1} C_{m} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q_{k}>{ }^{L} \rightarrow n_{G} y$
Also by the definition of G :
$\leq p B_{1} q_{1}>\rightarrow \mathrm{c}<r_{0} C_{1} r_{1}><r_{1} \underline{C}_{2} r_{2}>\ldots<r_{m-1} C_{m} q_{1} \geq$ is a rule of G.
Combining both, we get:
$<p B_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q_{k}>$
${ }^{L} \rightarrow_{G} C<r_{0} C_{1} r_{1}><r_{1} C_{2} r_{2}>\ldots<r_{m-1} C_{m} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q_{k}>$
${ }^{\mathrm{L}} \mathrm{T}_{\mathrm{G}} \mathrm{C} y \quad(=x)$. be the first rule applied. i.e., Then
$<p B_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q>$
${ }^{L} \rightarrow_{G} C<r_{0} C_{1} r_{1}><r_{1} C_{2} r_{2}>\ldots<r_{m-1} C_{m} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q>$
${ }^{\mathrm{L}} \rightarrow_{\mathrm{G}}{ }^{\mathrm{n}}$ cy $\quad(=\mathrm{x})$
But then since, by $\left(^{*}\right),\left[(p, c, B 1),\left(r_{0}, C_{1} C_{2} \ldots C_{m}\right)\right]-\left(^{* *}\right)$ is an instr of M,

$$
\begin{aligned}
& \left(p, x, B_{1} \ldots B_{k}\right){ }^{-->}{ }_{M}\left(r_{0}, y, C_{1} C_{2} \ldots C_{m} B_{2} \ldots B_{n}\right) \quad--B y\left({ }^{* *}\right) \\
& \rightarrow^{--{ }^{n}}{ }_{M}(q, \varepsilon, \varepsilon) \text {. -- ,by ind. hyp. QED }
\end{aligned}
$$

Theorem 25.2 L(G) = L(M).
Pf: $x \in L(G)$ iff $<s \perp t>\rightarrow^{*} x$
iff $(s, x, \perp) \quad->^{*}{ }_{M}(t, \varepsilon, \varepsilon) \quad----$ Lemma 25.1
iff $x \in L(M)$. QED
$\odot L=\left\{x \in\{[,]\}^{*} \mid x\right.$ is a balanced string of [and]], i.e., \#] $(x)=$

$\odot E x:[]][[]]] \in L$ but [] []]] $\notin \mathrm{L}$.
\bigcirc L can be accepted by the PDA
$M=(Q, \Sigma, \Gamma, \delta, p, \perp,\{t\})$, where
$\mathrm{Q}=\{\mathrm{p}, \mathrm{q}, \mathrm{t}\}, \Sigma=\{[]\},, \Gamma=\{\mathrm{A}, \mathrm{B}, \perp\}$, and δ is given as follows:

- (p, [, \perp) --> ($p, A \perp$),
- (p,[,A) --> (p,AA),
- (p,], A) --> (q, ε),
- (q,], B) --> (p, ε),
- ($\mathrm{p}, \varepsilon, \perp$) --> $(\mathrm{t}, \varepsilon)$

- M can be simulated by the $\mathrm{CFG} G=(\mathrm{N}, \Sigma,<\mathrm{p} \perp \mathrm{t}\rangle, \mathrm{P})$ where
- $N=\{\langle X D Y\rangle \mid X, Y \in\{p, q, t\}$ and $D \in\{A, B, \perp\}\}$,
- and P is derived from the following pseudo rules:
- (p, [, \perp) --> $(p, A \perp):<p \perp$?> $\rightarrow[<p A \perp ?>$
- (p,[,A) --> (p,AA): <pA ? $\gg\left[<p A ?_{2} A ?_{1}>\right.$
- (p,], A) --> (q, B), : <p A ?> \rightarrow] <qB?>

This produce 3 rules ($?=\mathrm{p}$ or q or t$)$.
$(\mathrm{q}, \mathrm{]}, \mathrm{~B})$--> $(\mathrm{p}, \varepsilon),:<\mathrm{q} \mathrm{B}$?> \rightarrow] <p ε ?>
This produces 1 rule :
(? = p, but could not be q or t why ?)
<q B ?> \rightarrow] <p ε ?> => <qBp> \rightarrow] <p $\left.\varepsilon p>\rightarrow^{0}\right]$
$(\mathrm{p}, \varepsilon, \perp)$--> $(\mathrm{t}, \varepsilon):<\mathrm{p} \perp$? $>\rightarrow<\mathrm{t} \varepsilon$?>
This results in $<\mathrm{p} \perp \mathrm{t}\rangle \rightarrow \varepsilon$ (since $<\mathrm{t} \varepsilon \mathrm{t}\rangle \rightarrow \varepsilon$.)

- <p \perp ? > \rightarrow [<pA \perp ? > \rightarrow resulting in 3 rules : ? = p, q or t .
- <p $\perp p>\rightarrow$ [<pA $\perp p>$--(1)
- $<p \perp q>\rightarrow[\quad<p A \perp q>--(2)$
- $\langle\mathrm{p} \perp \mathrm{t}\rangle \rightarrow$ [$\langle\mathrm{pA} \perp \mathrm{t}\rangle--$-(3)
- (1)~(3) each again need to be expanded into 3 rules.
- <pA \perp p> \rightarrow <pA?><? $\perp \mathrm{p}>$ where ? is p or q or t .
- <pA \perp q \rightarrow <pA?><? $\perp q>$ where ? is p or q or t.
- <pA $\perp \mathrm{t}\rangle \rightarrow<\mathrm{pA}$? $><$? $\perp \mathrm{t}\rangle$ where ? is p or q or t .
- $<p A ?_{1}>\rightarrow$ [$<p A ?_{2} A ?_{1}>$ resulting in 9 rules:
- Where $?_{2}=p, q$, or t.
- $\langle\mathrm{pAp}\rangle \rightarrow\left[\left\langle\mathrm{pA} ?_{2}\right\rangle<?_{2} \perp \mathrm{p}\right\rangle---(1)$
- $<p$ A q> \rightarrow [$\left\langle p A ?_{2}><?_{2} \perp q>--(2)\right.$
- $<\mathrm{pAt}\rangle \rightarrow\left[\quad<\mathrm{pA} ?_{2}><?_{2} \perp \mathrm{t}\right\rangle$

