COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

Pushdown Automata and Context-Free Languages

NPDAS

- A NPDA (Nondeterministic PushDown Automata) is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ where
 - Q is a finite set (the states)
 - Σ is a finite set (the input alphabet)
 - \bullet Γ is a finite set (the stack alphabet)
 - $\delta \subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ is the transition relation
 - $s \in Q$ is the start state
 - $\bot \in \Gamma$ is the initial stack symbol
 - $F \subseteq Q$ is the final or accept states
- $((p,a,A),(q,B_1B_2...B_k)) \in \delta$ means that

whenever the machine is in state p reading input symbol a on the input tape and A on the top of the stack, it pops A off the stack, push $B_1B_2...B_k$ onto the stack (B_k first and B_1 last), move its read head right one cell past the one storing a and enter state q.

 $((p,\epsilon,A),(q,B_1B_2...B_k)) \in \delta$ means similar to $((p,a,A),(q,B_1B_2...B_k)) \in \delta$ except that it need not scan and consume any input symbol.

CONFIGURATIONS

- Collection of information used to record the snapshot of an executing NPDA
- \bullet an element of Q x Σ^* x Γ^* .
- Configuration C = (q, x, w) means
 - the machine is at state q,
 - the rest unread input string is x,
 - the stack content is w.
- © Example: the configuration (p), basabba, ABAC⊥) might describe the situation:

 p

 C

START CONFIGURATION AND THE NEXT CONFIGURATION RELATIONS

- Given a NPDA M and an input string x, the configuration (s, x, \bot) is called the start configuration of NPDA on x.
- $CF_M =_{def} Q \times \Sigma^* \times \Gamma^*$ is the set of all possible configurations for a NPDA M.
- One-step computation (-->_M) of a NPDA:
 - (p, ay, A β) --> $_M$ (q, y, $\gamma \beta$) for each ((p,a,A), (q, γ)) $\in \delta$. (1)
 - $(p, y, A\beta) \longrightarrow_M (q, y, \gamma\beta)$ for each $((p, \epsilon, A), (q, \gamma)) \in \delta$. (2)
 - Let the next configuration relation $-->_M$ on CF_M^2 be the set of pairs of configurations satisfying (1) and (2).
 - -->_M describes how the machine can move from one configuration to another in one step. (i.e., C -->_M D iff D can be reached from C by executing one instruction)
 - Note: NPDA is nondeterministic in the sense that for each C there may exist multiple D's s.t. C -->_M D.

MULTI-STEP COMPUTATIONS AND ACCEPTANCE

- Given a next configuration relation -->_M:
 - Define \cdots and \cdots as usual, i.e.,
 - \circ C --> 0 _M D iff C = D.
 - C --> $^{n+1}_M$ iff \exists E C--> n_M E and E--> n_M D.
 - \circ C -->*_M D iff \exists n \geq 0 C -->n_M D.
 - i.e., --->*_M is the ref. and trans. closure of --> _M.
- Acceptance: When will we say that an input string x is accepted by an NPDA M?
 - two possible answers:
 - 1. by final states: M accepts x (by final state) iff
 - $(s,x, \perp) -->^*_M (p,\epsilon, \alpha)$ for some final state $p \in F$.
 - 2. by empty stack: M accepts x by empty stack iff
 - $(s,x, \perp) -->^*_M (p,\epsilon, \epsilon)$ for any state p.
 - Remark: both kinds of acceptance have the same expressive power.

LANGUAGE ACCEPTED BY A NPDAS

 $M = (Q, \Sigma, \Gamma, \delta, s, F)$: a NPDA.

The languages accepted by M is defined as follows:

- 1. accepted by final state:
- $L_f(M) = \{x \mid M \text{ accepts } x \text{ by final state} \}$
- 2. accepted by empty stack:
- $L_e(M) = \{x \mid M \text{ accepts } x \text{ by empty stack}\}.$
- 3. Note: Depending on the context, we may sometimes use L_f and sometimes use L_e as the official definition of the language accepted by a NPDA. I.e., if there is no worry of confusion, we use L(M) instead of $L_e(M)$ or $L_f(M)$ to denote the language accepted by M.
- 4. In general $L_e(M) \neq L_f(M)$.

SOME EXAMPLE NPDAS

Ex 23.1 : M_1 : A NPDA accepting the set of balanced strings of parentheses [] by empty stack.

```
• M_1 requires only one state q and behaves as follows:

1. while input is '[': push '[' onto the stack;

2. while input is 'and top is '[': pop

3. while input is '\epsilon' and top is \pm: pop.

Formal definition: Q = \{q\}, \Sigma = \{[,]\}, \Gamma = \{[, \pm\}, \text{ start state} = q, \text{ initial stack symbol} = \pm.

\delta = \{ ((q,[,\pm), (q,[\pm)), ((q,[,[), (q,[[)), //1)), ((q,[,[), (q,[,]), (q,[,[)))) \} //3

Transition Diagram representation of the program \delta:
```

$$((p,a A), (q,B_1...B_n)) \in \delta \Longrightarrow$$

This machine is not deterministic. Why?

$$p \xrightarrow{a,A/B_1...B_n} q$$

 $p \xrightarrow{a,A/B_1...B_n} q$

EXAMPLE: EXECUTION SEQUENCES OF M1

```
let input x = [[[]][]][]. Then below is a successful computation of M_1 on x:
        (q, [[[]]][]]]: the start configuration
--><sub>M</sub> (q, [[]][]][],
(i)
                                     [ \bot ) instruction or transition
 --><sub>M</sub> (q, []][]
                                                 transition (ii)
 -->_{M} (q, ] ] [ ] ] [ ], [ [ [ \bot ]
                                                 transition (ii)
 --><sub>M</sub> (q,
                                                transition (iii)
 --><sub>M</sub> (q, []][],
                                                transition (iii)
 --><sub>M</sub> (q,
                                                transition (ii)
 --><sub>M</sub> (q,
                                                transition (iii)
 --><sub>M</sub> (q,
                                               transition (iii)
                                               transition (i)
 --><sub>M</sub> (q,
 --><sub>M</sub> (q,
                                               transition (iii)
  --><sub>M</sub> (q,
                                               transition (iv)
         accepts by empty stack
```

FAILURE COMPUTATION OF M1 ON X

 $(s,x,\perp) -->^*_M D.$

 Note besides the above successful computation, there are other computations that fail.

• Theorem 1: String $x \in \{[,]\}^*$ is balanced iff it is accepted by M_1 by empty stack.

Definitions:

- 1. A string x is said to be pre-balanced if $L(y) \ge R(y)$ for all prefixes y of x.
- 2. A configuration (q, z, α) is said to be blocked if the pda M cannot use up input z, i.e., there is no state r and stack β such that $(q, z, \alpha) \rightarrow * (r, \epsilon, \beta)$.

Facts:

- 1. If initial configuration (s, z, \perp) is blocked then z is not accepted by M.
- 2. If (q, z, α) is blocked then (q, zw, α) is blocked for all $w \in \Sigma^*$.
- Pf: 1. If (s, z, \bot) is blocked, then there is no state p, stack β such that $(s, z, \bot) \dashrightarrow$ (p, ε, β) , and hence z is not accepted.
 - 2. Assume (q, zw, α) is not blocked, then there must exists intermediate cfg (p, w, α') such that $(q, zw, \alpha) \rightarrow * (p, w, \alpha') \rightarrow * (r, \epsilon, \beta)$. But $(q, zw, \alpha) \rightarrow * (p, w, \alpha')$ implies $(q, z, \alpha) \rightarrow * (p, \epsilon, \alpha'')$ and (q, z, α) is not blocked.

- Lemma 1: For all strings z,x,
 - if z is prebalanced then $(q, \mathbf{z}x, \perp) -->^* (q, x, \alpha \perp)$ iff $\alpha = [L(z)-R(z)];$
 - if z is not prebalanced, (q, z, \bot) is blocked.

Pf: By induction on z.

```
basic case: z = \varepsilon. Then (q, zx, \bot) = (q, x, \bot) \rightarrow^0 (q, x, \alpha \bot) iff \alpha = [L(z)-R(z)]. inductive case: z = ya, where a is '[' or ']'.
```

case 1: z = y[.

If y is prebalanced, then so is z. By ind. hyp. $(q, zx, \bot) = (q,y[, \bot) -->* (q, [x, [(y)-R(y)\bot]) -->(q, x, [((y)-R(y)\bot]) -->(q, x, [((y)-R(y)\bot]) -->(q, x, (((x)-R(y)\bot]) -->(q, x, ((x)-R(y))) -->(q, x, ((x)-R(y)$

If y is not prebalanced, then, by ind. hyp., (q, y, \bot) is blocked and hence $(q, y[, \bot)$ is blocked as well.

case 2: z = y].

If y is not prebalanced, then neither is z. By ind. hyp. (q, y, \bot) is blocked, hence $(q, y], \bot)$ is blocked

If y is prebalanced and L(y) = R(y). Then z is not prebalanced.

By ind. hyp., if $(q, y], \perp)$ -->* $(q,], \alpha \perp$) then $\alpha = [L(z)-R(z)] = \epsilon$, but then $(q,], \perp$) is blocked. Hence (q, z, \perp) is blocked.

Finally, if y is prebalanced and L(y) > R(y). Then z is prebalanced, and

$$(q,y]x,\perp)-->* (q,]x, [^{L(y)-R(y)} \perp) --- ind. hyp$$
--> $(q, x, [^{L(y)-R(y)-1} \perp) --- (iii)$
= $(q, x, [^{L(z)-R(z)} \perp)$

On the other hand, if

 $(q,y]x,\perp)-->^* (q,x,\alpha\perp)$.Then there must exist a cfg $(q,]x,\beta)$ such that $(q,y]x,\perp)-->^* (q,]x,\beta)$ -->* $(q,x,\alpha\perp)$.

But then the intructions executed in the last part must be IV* III IV*.

If $(q,]x, \beta)$ -->_{|V*||||V*} $(q,x, \alpha \bot)$, then $\beta = \bot^m[\bot^v\alpha \bot$. But by ind. hyp., $\beta = [^{L(y)} \bot$, hence m = 0, n = 0 and $\alpha = [^{L(y)} - R(y) - 1] \bot$.

Pf [of theorem 1]: Let x be any string.

If x is balanced, then it is prebalanced and L(x) - R(x) = 0. Hence, by lemma 1, $(q, x\epsilon, \bot)$ --->* $(q, \epsilon, [^0\bot)$ ---> $_{\text{IV}}$ (q, ϵ, ϵ) . As a result, x is accepted.

If x is not balanced, it is not prebalanced. Hence, by lemma 1, (q, x, \bot) is blocked and is not accepted.

ANOTHER EXAMPLE

 The set {ww | w ∈ {a,b}*} is known to be not Context-free but its complement

$$L_1 = \{a,b\}^* - \{ww \mid w \in \{a,b\}^*\}$$
 is.

Exercise: Design a NPDA to accept L₁ by empty stack.

```
Hint: x \in L_1 iff

(1) |x| is odd or

(2) x = yazybz' or ybzyaz' for some y,z,z' \in \{a,b\}^*

with |z| = |z'|, which also means

x = yay'ubu' or yby'uau' for some y,y',u,u' \in \{a,b\}^*

with |y| = |y'| and |u| = |u'|.
```

EQUIVALENT EXPRESSIVE POWER

BOTH TYPES OF ACCEPTANCE \bullet M = (Q, Σ , Γ , δ ,s,,F): a PDA

Let u, t: two new states $\notin Q$ and

lacktriangle: a new stack symbol $\notin \Gamma$.

- Define a new PDA M' = $(Q', \Sigma, \Gamma', \delta', s', \bullet, F')$ where
 - Q' = Q U $\{u, t\}$, $\Gamma' = \Gamma \cup \{*\}$, s' = u, $\Gamma' = \{t\}$ and
 - $\delta' = \delta \cup \{ (u, \varepsilon, \bullet) \longrightarrow (s, \bot \bullet) \} // \text{ push } \bot \text{ and call } M$
 - U $\{ (f, \epsilon, A) \rightarrow (t, A) \mid f \in F \text{ and } A \in \Gamma' \} / * \text{ return to } M' \}$
 - after reaching final states */
 - $U \{(t, \varepsilon, A) \longrightarrow (t, \varepsilon) \mid A \in \Gamma' \} // \text{ pop until EmptyStack}$
- Diagram form relating M and M': see next slide.

Theorem: $L_f(M) = L_e(M')$

pf: M accepts
$$x => (s, x, \bot) -->_{M}^{n} (q, \varepsilon, \gamma)$$
 for some $q \in F$

$$=> (u, x, \blacklozenge) -->_{M'} (s, x, \bot \blacklozenge) -->_{M'} (q, \varepsilon, \gamma \blacklozenge) -->_{M'} (t, \varepsilon, \gamma \blacklozenge)$$

$$\blacklozenge)$$

 $-->^*_{M}$, $(t,\varepsilon,\varepsilon) => M'$ accepts x by empty stack.

*: push ⊥ and call M

+: return to t of M' once reaching final states of M

++: pop all stack symbols until emptystack

FROM FINALSTATE TO EMPTYSTACK

Conversely, M' accepts x by empty stack

```
=> (u, x, \bullet) -->_{M}, (s, x, \bot \bullet) -->^*_{M}, (q, y, \gamma \bullet) --> (t, y, \gamma \bullet)

(t, \varepsilon, \varepsilon) for some q \in F
```

- \Rightarrow y = ϵ since M' cannot consume any input symbol after it enters state t. => M accepts x by final state.
- Define next new PDA M" = $(Q',\Sigma,\Gamma',\delta'',s', \bullet, F')$ where
 - Q' = Q U { u, t}, $\Gamma' = \Gamma U \{ \}$, s' = u, $\Gamma' = \{t\}$ and
 - δ " = δ U { (u,ε, \spadesuit) --> (s, \bot \spadesuit) } // push \bot and call M
 - U $\{(p,\epsilon, \bullet) \rightarrow (t, \epsilon) \mid p \in Q \}$ /* return to M" and accept
 - if EmptyStack */

Diagram form relating M and M": See slide 15.

FROM EMPTYSTACK TO FINALSTATE

```
• Theorem: L_e(M) = L_f(M'').
pf: M accepts x \Rightarrow (s, x, \bot) \rightarrow n_M (q, \varepsilon, \varepsilon)
      => (u, x, \diamond) \longrightarrow_{M} (s, x, \bot \diamond) \longrightarrow_{M} (q, \varepsilon, \varepsilon \diamond) \longrightarrow_{M} (t, \varepsilon, \varepsilon)
   \epsilon, \epsilon)
      => M" accepts x by final state (and empty stack).
Conversely, M" accepts x by final state (and empty stack)
=> (u, x, \diamond) -->_{M''} (s, x, \bot \diamond) -->^*_{M''} (q, y, \diamond) -->_{M''} (t, \varepsilon, \varepsilon)
   for
        some state q in Q
=> y = \varepsilon [and STACK= \varepsilon] since M" does not consume any
   input symbol at the last transition ((q, \epsilon, \diamond), (t, \epsilon))
=> M accepts x by empty stack.
QED
```

FROM EMPTYSTACK TO FINAL STATE (AND EMPTYSTACK)

- *: push ⊥ and call M
- +: if emptystack (i.e.see ♦ on stack),
 then pop ♦ and return to state t of M"

EQUIVALENCE OF PDAS AND CFGS

- Every CFL can be accepted by a PDA.
- \bullet G = (N, Σ ,P,S) : a CFG.
 - wlog assume all productions of G are of the form:
 - A -> c $B_1B_2B_3...B_k$ (k≥0) and c ∈ Σ U {ε}.
 - note: 1. A -> ε satisfies such constraint; 2. can require $k \le 2$.
- Define a PDA M = ($\{q\}, \Sigma, N, \delta, q, S, \{\}$) from G where
 - q is the only state (hence also the start state),
 - Σ , the set of terminal symbols of G, is the input alphabet of M,
 - N, the set of nonterminals of G, is the stack alphabet of M,
 - S, the start nonterminal of G, is the initial stack symbol of M,
 - {} is the set of final states. (hence M accepts by empty stack!!)
 - $\delta = \{ ((q,c,A), (q, B_1B_2...B_k)) \mid A \rightarrow c B_1B_2B_3...B_k \in P \}$

- L(G) = the set of nonempty balanced parentheses.
- leftmost derivation v.s. computation sequence (see next table)

$$S^{L-->*_{G}}$$
 [[[]]]] $<==>$ (q, [[[]][]], S) $-->*_{M}$ (q, ϵ , ϵ)

rule applied	sentential form of left- most derivation	configuration of the pda accepting x
	S	(q, [[[]][]], S)
3	[S B	(q, [[[[]] []], SB)
4	[[SBSB	(q, [[[]] []], SBSB)
2	[[<u>B</u> BSB	(q, [[[]] []], BBSB)
5	[[[]BSB	(q, [[[]] []], BSB)
5	[[[]]SB	(q,[[[]], SB)
2	[[[]] <u>[B</u> B	(q, [[[]] []], BB)
5	[[[]][]B	(q, , [[[]][]], B)
5	[[[]]]]]	(q,,[[[]] []] ,)

LEFTMOST DERIVATION V.S. COMPUTATION SEQUENCE

```
Lemma 24.1: For any z,y \in \Sigma^*, \gamma \in \mathbb{N}^* and A \in \mathbb{N},
             A^{L}-->_{G}^{n} z \gamma iff (q, zy, A) -->_{M}^{n} (q, y, \gamma)
Ex: S^{L-->3}_{G} [ [ BBSB <==> (q, [[[ ]][]], S) -->^{3}_{M} (q, ]][]], BBSB)
pf: By ind. on n.
 Basis: n = 0. A^{L} - > 0 z \gamma iff z = \varepsilon and \gamma = A
     iff (q, zy, A) = (q, y, \gamma) iff (q, zy, A) -->_{M} (q, y, \gamma)
 Ind. case: 1. (only-if part)
 Suppose A L-->^{n+1}<sub>G</sub> z \gamma and B -> c\beta was the last rule applied.
 I.e., A^{L} - >_G uB\alpha U - >_G uc \beta\alpha = z \gamma with z = uc and \gamma = \beta\alpha.
  Hence (q, u cy, A) \longrightarrow_M (q, cy, B\alpha) // by ind. hyp.
                                  -->_{M} (q, y, \beta\alpha) // since ((q,c,B),(q, \beta)) \in
```

COMPUTATION SEQUENCE (CONT'D)

```
2. (if-part) Suppose (q, zy, A) -->^{n+1}M (q, y, \gamma) and
   ((q,c,B),(q,\beta)) \in \delta is the last transition executed. I.e.,
 (q, zy, A) -->^n (q, cy, B\alpha) -->_M (q, y, \beta\alpha) with \gamma = \beta\alpha and z = uc
                                                                               for some
   u. But then
  A^{L}-->n_G uB\alpha // by ind. hyp.,
      L--> uc \beta\alpha = z \gamma // since by def. B -> c \beta \in P
 Hence A ^{L}-->^{n+1}<sub>G</sub> z \gamma QED
Theorem 24.2: L(G) = L(M).
pf: x \in L(G) iff S^{L} --> *_{G} x
                     iff (q, x, S) \longrightarrow_M^* (q, \varepsilon, \varepsilon)
                     iff x \in L(M). QED
```

SIMULATING PDAS BY CFGS

- Claim: Every language accepted by a PDA can be generated by a CFG.
- Proved in two steps:
 - 1. Special case: Every PDA with only one state has an equivalent CFG
 - 2. general case: Every PDA has an equivalent CFG.
- Corollary: Every PDA can be minimized to an equivalent PDA with only one state.
- pf: M: a PDA with more than one state.
 - 1. apply step 2 to find an equivalent CFG G
 - 2. apply theorem 24.2 on G, we find an equivalent PDA with only one state.

PDA WITH ONLY ONE STATE HAS AN EQUIVALENT CFG.

• M = ({s}, Σ , Γ , δ , s, \bot , {}) : a PDA with only one state. Define a CFG G = (Γ , Σ , P, \bot) where $P = \{ A \rightarrow c\beta \mid ((q, c, A), (q, \beta)) \in \delta \}$

Note: M ==> G is just the inverse of the transformation:

G ==> M defined at slide 16.

Theorem: L(G) = L(M).

Pf: Same as the proof of Lemma 24.1 and Theorem 24.2.

SIMULATING GENERAL PDAS BY CFGS

- How to simulate arbitrary PDA by CFG?
 - idea: encode all state/stack information in nonterminals !!
- Wlog, assume $M = (Q, \Sigma, \Gamma, \delta, s, \bot, \{t\})$ be a PDA with only one final state and M can empty its stack before it enters its final state. (The general pda at slide 15 satisfies such constraint.)

```
Let N \subseteq Q x \Gamma^* x Q. Elements of N are written as <pABCq>. Define a CFG G = (N, \Sigma, <s \bot t>, P) where P = \{ <pAr> \rightarrow c < q B_1 B_2 ... B_k r>  ((p,c,A), (q, B_1 B_2 ... B_k)) \in \delta, k \ge 0, c \in \Sigma \cup \{\epsilon\}, r \in Q \} U Rules for nonterminals <q B_1 B_2 ... B_k r>
```

RULES FOR $<Q B_1 B_2 ... B_K R>$

We want $qB_1...B_k$ r > to simulate the computation process in PDA M:

$$(q, \underline{w}y, \underline{B_1}\underline{B_2}...\underline{B_k}\beta)$$
 |-...|- (r, y, β) iff $\rightarrow^* w$.

Hence: if
$$k = 0$$
. ie., $\langle qB_1B_2...B_kr \rangle = \langle q\epsilon r \rangle$, we should have $\langle qr \rangle \rightarrow \epsilon$ if $q = r$ and $\langle qr \rangle$ has no rule if $q \neq r$.

If k > 1. Let $B_1B_2...B_k = B_1\Delta_2$, then:

$$\bullet < qB_1\Delta_2r > \rightarrow \Sigma_{u1\in Q} < qB_1u_1 > < u_1\Delta_2r >$$

$$\bullet$$
 \rightarrow ...

$$\bullet \to \Sigma_{u1 \in Q} \Sigma_{u2 \in Q} \dots < u_1B_2u_2> \dots < u_{k-1}B_kU_k>< U_k\Delta_kr>$$

$$\bullet \to \Sigma_{u1 \in O} \Sigma_{u2 \in O} \dots < u_1B_2u_2>...< u_{k-1}B_k r>$$

$$(p, c, A) \longrightarrow (q, B_1B_2...B_k)$$

We want to use $\langle pAq \rangle \rightarrow^* w$ to simulate the computation: $(p, wy, A\beta) \rightarrow^*_M (q, y, \epsilon\beta)$ So, if $(p,c,A) \rightarrow_M (q, \alpha)$ we have rules : $\langle pAr \rangle \rightarrow^* c \langle q\alpha r \rangle$ for all states r.

HOW TO DERIVE THE RULE $\langle P A R \rangle \rightarrow C \langle Q A R \rangle$?

How to derive rules for the nonterminal : $<q \alpha r>$

- case 1: $\alpha = B_1B_2B_3...B_n$ (n > 0)
 - $= > < q \alpha r > = < q B_1 Q B_2 Q B_3 Q ... Q B_n r >$
 - \blacksquare => <q α r > → <q B₁ q₁ > <q₁ B₂ q₂> ...
 - $q_{n-1} B_n$ r> for all states $q_1, q_2, ..., q_{n-1}$ in Q.
- case2: $\alpha = \varepsilon$.
 - $q = r \Rightarrow \langle q \alpha r \rangle = \langle q \epsilon r \rangle \rightarrow \epsilon$.
 - $q != r => < q \epsilon r > cannot derive any string.$
 - Then $\langle pAq \rangle \rightarrow c \langle q\epsilon q \rangle = c$.

SIMULATING PDAS BY CFG (CONT'D)

• Note: Besides storing sate information on the nonterminals, G simulate M by guessing nondeterministically what states M will enter at certain future points in the computation, saving its guesses on the sentential form, and then verifying later that those guesses are correct.

```
Lemma 25.1: (p,x,B_1B_2...B_k) -->^n_M (q,\epsilon,\epsilon) iff \exists q_1,q_2,...q_k (=q) such that < pB_1q_1 > < q_1B_2q_2 > ... < q_{k-1}B_kq > \stackrel{L}{\longrightarrow}^n_G x. (*)
```

Note: 1. when k = 0 (*) is reduced to $\langle pq \rangle \stackrel{L}{\rightarrow} ^{n}_{G} x$ 2. In particular, $(p,x,B) \xrightarrow{-->n}_{M} (q,\epsilon,\epsilon)$ iff $\langle pBq \rangle \stackrel{L}{\rightarrow} ^{n}_{G} x$. Pf: by ind. on n. Basis: n = 0.

LHS holds iff ($x = \varepsilon$, k = 0, and p = q) iff RHS holds.

SIMULATING PDAS BY SINGLE-STATE PDAS (CONT'D)

Inductive case:

```
(=>:) Suppose (p,x,B_1B_2...B_k) \longrightarrow (q,\epsilon,\epsilon) and
   ((p,c,B_1),(r,C_1C_2...C_m)) is the first instr. executed. I.e.,
    (p,x,B_1B_2...B_k) -->_M (r, y, C_1C_2...C_mB_2...B_k) -->_M (q,\epsilon,\epsilon),
     where x = cy.
By ind. hyp., \exists states r_1,...,r_{m-1},(r_m=q_1), q_2,... q_{k-1} with
    < rC_1r_1 > < r_1C_2r_2 > ... < r_{m-1}C_mq_1 > < q_1B_2q_2 > ... < q_{k-1}B_kq_k > L \rightarrow n_G
Also by the definition of G:
  \underline{\langle pB_1q_1 \rangle \rightarrow c \langle r_0C_1r_1 \rangle \langle r_1C_2r_2 \rangle ... \langle r_{m-1}C_mq_1 \rangle} is a rule of G.
Combining both, we get:
 < pB_1q_1 > < q_1B_2q_2 > ... < q_{k-1}B_kq_k >
L \rightarrow C < r_0 C_1 r_1 > < r_1 C_2 r_2 > ... < r_{m-1} C_m q_1 > < q_1 B_2 q_2 > ... < q_{k-1} B_k q_k > c
 L \rightarrow n_G c y \quad (= x).
```

```
(<=:) Suppose <pB_1q_1><q_1 B_2 q_2>...<q_k_1 B_k q> \stackrel{L\rightarrow n+1}{\rightarrow} x.
Let AT_1 RG_1 PDAS_2 PC_2 FGS_1 CDMT D_1 --(*)
   be the first rule applied. i.e., Then
 < q_1 B_2 q_2 > ... < q_{k-1} B_k q >
L \rightarrow_G c < r_0 C_1 r_1 > < r_1 C_2 r_2 > ... < r_{m-1} C_m q_1 > < q_1 B_2 q_2 > ... < q_{k-1} B_k q_k > ...
L \rightarrow c_0 cy (= x)
But then since, by (*), [(p, c, B1), (r_0, C_1C_2...C_m)] - (**) is an instr of
   Μ,
(p,x,B_1...B_k) -->_M (r_0, y, C_1C_2...C_mB_2...B_n) --- By (**)
                       -->^n M (q, \varepsilon, \varepsilon). -- ,by ind. hyp. QED
Theorem 25.2 L(G) = L(M).
Pf: x \in L(G) iff \langle s \perp t \rangle \rightarrow^* x
                     iff (s,x,\perp) \longrightarrow_M^* (t,\epsilon,\epsilon) ---- Lemma 25.1
                      iff x \in L(M). QED
```

- Ex: []] [[]]]] ∈ L but [][]]] ∉ L.
- L can be accepted by the PDA

$$M = (Q, \Sigma, \Gamma, \delta, p, \bot, \{t\}), where$$

Q = {p,q,t},
$$\Sigma$$
 = {[,]}, Γ = {A, B, \bot },

and δ is given as follows:

- **■** (p, [, ⊥) --> (p, A⊥),
- (p,[,A) --> (p,AA),
- $(p,], A) --> (q, \varepsilon),$
- $(q,], B) --> (p, \varepsilon),$
- $(p, \varepsilon, \perp) \longrightarrow (t, \varepsilon)$

• M can be simulated by the CFG G = $(N,\Sigma, , P)$ where

```
N = \{ \langle X D Y \rangle \mid X, Y \in \{p,q,t\} \text{ and } D \in \{A,B,\bot\} \},
       and P is derived from the following pseudo rules:
      (p, \lceil, \perp) \longrightarrow (p, A\perp) : \langle p \perp ? \rangle \longrightarrow \lceil \langle pA\perp ? \rangle
     (p, [A) --> (p, AA) : < pA?_1> \rightarrow [ < pA?_2A?_1>
• (p, ], A) --> (q, B), : \langle p A ? \rangle \rightarrow ] \langle qB? \rangle
                     This produce 3 rules (? = p or q or t).
• (q, 1, B) \longrightarrow (p, \epsilon), : \langle q B? \rangle \rightarrow 1 \langle p \epsilon? \rangle
                     This produces 1 rule:
                   (? = p, but could not be q or t why?)
             \langle q B ? \rangle \rightarrow 1 \langle p \varepsilon ? \rangle = \langle qBp \rangle \rightarrow 1 \langle p\varepsilon p \rangle \rightarrow 0
     (p,\epsilon, \perp) \longrightarrow (t,\epsilon) : \langle p \perp ? \rangle \rightarrow \langle t \epsilon ? \rangle
             This results in \langle p \perp t \rangle \rightarrow \epsilon (since \langle t \epsilon t \rangle \rightarrow \epsilon.)
```

- $\langle p \perp ? \rangle$ → [$\langle pA \perp ? \rangle$ resulting in 3 rules : ? = p, q or t.
- $q \rightarrow (p \perp q) \rightarrow (q \rightarrow q)$
- \bullet <p \(\perp \text{t} \rightarrow \) [<pA\(\perp \text{t} \rightarrow \cdots \) (3)
- (1)~(3) each again need to be expanded into 3 rules.
- $\langle pA \perp p \rangle \rightarrow \langle pA? \rangle \langle ? \perp p \rangle$ where ? is p or q or t.
- $\langle pA \perp q \rangle \rightarrow \langle pA? \rangle \langle ? \perp q \rangle$ where ? is p or q or t.
- \rightarrow <pA⊥ t> \rightarrow <pA?><? ⊥ t> where ? is p or q or t.
- 1</sub>> [<pA?₂A?₁> resulting in 9 rules:
- Where $?_2 = p,q$, or t.
- $\rightarrow [< pA?_2 > <?_2 \perp q > ---(2)$
- $\rightarrow [< pA?_2 > <?_2 \bot t > ---(3)$