COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Non Regular Languages
- Pumping Lemma

NON REGULAR LANGUAGE HOW CAN WE PROVE THAT A LANGUAGE IS NOT REGULAR?

Non-regular $\left\{a^{n} b^{n} \cdot n \geq 0\right\}$ Non-regular languages

$$
\left\{v v^{R}: v \in\{a, b\}\right.
$$

Regular languages

$$
a * b
$$

$$
b^{*} c+a
$$

$$
b+c(a+b) *
$$

etc...

How can we prove that a language L is not regular?

Prove that there is no DFA or NFA or RE that accepts L

Difficulty: this is not easy to prove
(since there is an infinite number of them)
Solution: use the Pumping Lemma !!!

THE PGEONHOLE PRINCIPLE

4 pigeons

O

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

-

m pigeonholes
$n>m$

n TH:Eg.PIGEONHOLE PRINCIPLE
 -

m pigeonholes
$n>m$

There is a pigeonhole with at least 2 pigeons

THE P GEONHOLE PRINCIPLE

AND

DFAS

Consider a DFA with 4 states

Consider the walk of a "long" string: aaad (length at least 4)

A state is repeated in the walk of aaaab

$$
\left.\left(q_{1}\right) \xrightarrow{a} \rightarrow q_{2}\right) \xrightarrow{a} \xrightarrow{a} \xrightarrow{a} \xrightarrow{a} \xrightarrow{a} \xrightarrow{(94)}
$$

The state is repeated as a result of the pigeonhole principle

Walk of aaaab
Pigeons: (walk states)

Are more than

Nests:
(Automaton states)

(92)
q3
Repeated state

Consider the walk of a "long" string: aabl (length at least 4)

Due to the pigeonhole principle:
A state is repeated in the walk of $a a b b$

$$
\left(q_{1}\right) \xrightarrow{a}\left(q_{2}\right) a \xrightarrow{a}\left(q_{3}\right) \xrightarrow{b} \xrightarrow{(q 4)}
$$

The state is repeated as a result of the pigeonhole principle

Walk of $a a b b$
Pigeons:
(walk states)
Are more than

Nests:
(Automaton states)
Automaton States
sta

In General: If $|w| \geq \#$ states of DFA, by the pigeonhole principle, a state is repeated in the walk w

Walk of $w=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$

Arbitrary DFA

Repeated state

$|w| \geq \#$ states of DFA $=m$

Pigeons: (walk states)

Walk of w
(Automaton states) A state is
repeated

THE PUMPING LEMMA

Take an infinite regular language L (contains an infinite number of strings)

There exists a DFA that accepts L

m
states

Take string $w \in L$ with $|w| \geq m$
then, at least one state is repeated in the walk of w

Walk in DFA of

$$
w=\sigma_{1} \sigma_{2} \cdots \sigma_{k}
$$

Repeated state in DFA

There could be many states repeated

Take q to be the first state repeated

One dimensional projection of walk w :

Firs \dagger

Second
occurrence
occurrence

We can write $w=x y z$

One dimensional projection of walk w : First

Second
occurrence
occurrence

In DFA: $w=x y z$

contains only

Observation:
 length $|x y| \leq m$ number of states of DFA

Observation: \quad length $|y| \geq 1$

Since there is at least one transition in oop

We do not care about the form of string

z. may actually overlap with the paths of x and y

Additional string: The string $x z$ is accepted

Do not follow loop

Additional string:

The string $x y y z$ is accepted

Additional string:
The string
$x y y y$ is accepted

Follow loop 3 times

The string $\quad x y^{i} z$ is accepted $i=0,1,2, \ldots$

Therefore:

$x y^{i} z \in L$

$i=0,1,2, \ldots$

Language accepted by the DFA

- Given a infinite regular language THE PUMPING LEMMA: L
- there exists an integer m (critical length)
- for any string $w \in L$ with length $|w| \geq m$
- we can write $w=x y z$
- with $|x y| \leq m$ and $|y| \geq 1$
- such that: $x y^{i} z \in L \quad i=0,1,2, \ldots$

In the book:

Critical length $m=$ Pumping length P

