


 

Minimization Algorithm contd. 

Minimization Algorithm Example 



Minimization Algorithm 

 Guarantees smallest possible DFA for a given 

regular language 

 Proof of this fact (Time allowing ) 

Pumping Lemma 

 Gives a way of determining when certain languages 

are non-regular 

 A direct consequence of applying pigeonhole 

principle to automata (Time allowing ) 
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Consider the accept states c and g.  They are both 

sinks meaning that any string which ever reaches 

them is guaranteed to be accepted later. 

Q:  Do we need both states? 
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A:  No, they can be unified as illustrated below. 

Q:  Can any other states be unified because any 

subsequent string suffixes produce identical results? 
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A:  Yes, b and f.  Notice that if you’re in b or f then: 

1. if string ends, reject in both cases 

2. if next character is 0, forever accept in both cases 

3. if next character is 1, forever reject in both cases 

So unify b with f. 
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Intuitively two states are equivalent  if all 

subsequent behavior from those states is 

the same. 

Q:  Come up with a formal characterization of 

state equivalence. 
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DEF:  Two states q and q’  in a DFA M = (Q, S, d, 

q0, F ) are said to be equivalent (or 

indistinguishable) if for all strings u  S*, the 

states on which u ends on when read from q 

and q’  are both accept, or both non-accept. 

Equivalent states may be glued together without 

affecting M’ s behavior. 
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Q:  Any other ways to simplify the automaton? 
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A:  Get rid of d. 

Getting rid of unreachable useless states doesn’t 

affect the accepted language. 
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DEF:  An automaton is irreducible if  
 it contains no useless states, and 

 no two distinct states are equivalent. 

The goal of minimization algorithm is to create 
irreducible automata from arbitrary ones. Later: 
remarkably, the algorithm actually produces 
smallest possible DFA for the given language, 
hence the name “minimization”. 

The minimization algorithm reverses previous 
example.  Start with least possible number of 
states, and create new states when forced to. 

Explain with a game: 
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0. All useless players are disqualified. 
1. Game proceeds in rounds.  
2. Start with 2 teams:  ACCEPT vs. REJECT. 
3. Each round consists of sub-rounds –one sub-

round per team. 
4. Two members of a team are said to agree if 

for a given label, they want to pass the buck 
to same team.  Otherwise, disagree. 

5. During a sub-round, disagreeing members split 
off into new maximally agreeing teams. 

6. If a round passes with no splits, STOP. 
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DFA minimize(DFA (Q, S, d, q0, F ) ) 

  remove any state q unreachable from q0  

  Partition P = {F, Q - F }  

  boolean Consistent = false 

  while( Consistent == false ) 

    Consistent = true 

    for(every Set S  P, char a  S, Set T  P ) 

          Set temp = {q T | d(q,a) S } 

          if (temp != Ø  && temp != T )  

            Consistent = false 

            P = (P -T ){temp,T-temp} 

  return defineMinimizor( (Q, S, d, q0, F ), P ) 
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DFA defineMinimizor 

  (DFA (Q, S, d, q0, F ), Partition P ) 

  Set Q’ =P  

  State q’0 = the set in P  which contains q0 

  F’ = { S  P  | S  F } 

  for (each S  P, a  S) 

    define d’ (S,a) = the set T  P  which contains 

    the states d’(S,a) 

  return (Q’, S, d’, q’0, F’ ) 
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Start with a DFA 
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  Miniature version  
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Split into two teams. 

ACCEPT 

    vs. 

REJECT 
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0-label doesn’t split 

up any teams 
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1-label splits up 

REJECT's 
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No further splits.  HALT! 

Start team 

contains 

original 

start  
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States of the minimal automata are 

remaining teams.  Edges are 

consolidated across each team. Accept  

states are break-offs from 

original ACCEPT team. 
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Previous algorithm guaranteed to produce an 

irreducible FA.  Why should that FA be the 

smallest possible FA for its accepted 

language? 

Analogous question in calculus:  Why should a 

local minimum be a global minimum?  

Usually not the case! 
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THM (Myhill-Nerode):  The minimization 
algorithm produces the smallest possible 
automaton for its accepted language. 

Proof.  Show that any irreducible 
automaton is the smallest for its accepted 
language L: 

We say that two strings u,v  S* are 
indistinguishable if for all suffixes x, ux 
is in L exactly when vx is. 

Notice that if u  and v  are distinguishable, 
the path from their paths from the start 
state must have different endpoints. 
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Consequently, the number of states in any 
DFA for L must be as great as the number 
of mutually distinguishable strings for L. 

But an irreducible DFA has the property that 
every state gives rise to another mutually 
distinguishable string! 

Therefore, any other DFA must have at least 
as many states as the irreducible DFA
        • 

Let’s see how the proof works on a previous 
example: 
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The “spanning tree of strings” {e,0,01,00} is a 

mutually distinguishable set (otherwise 

redundancy would occur and hence DFA would be 

reducible).  Any other DFA for L has 4 states. 
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Consider the language  

L1 = 01* = {0, 01, 011, 0111, … } 

The string 011 is said to be pumpable in L1 
because can take the underlined 
portion, and pump it up (i.e. repeat) as 
much as desired while always getting 
elements in L1. 

Q:  Which of the following are pumpable? 

1. 01111 

2. 01 

3. 0 
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2. Pumpable: 01 

3. 0 not pumpable because most of 0* not in L1 

Define L2 by the following automaton: 

 

 

Q:  Is 01010 pumpable? 



45 

0 
0 

1 

0 

A:  Pumpable: 01010, 01010.  Underlined 
substrings correspond to cycles in the FA! 

 Cycles in the FA can be repeated arbitrarily 
often, hence pumpable. 

 

 

Let L3 = {011,11010,000, e} 

Q:  Which strings are pumpable? 
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A: None!  When pumping any string non-
trivially, always result in infinitely many 
possible strings.  So no pumping can go 
on inside a finite set.  

Pumping Lemma give a criterion for when 
strings can be pumped: 



THM:  Given a regular language L, there is a 
number p (called the pumping number)  
such that any string in L of length  p is 
pumpable within its first p letters.  In 
other words, for all u  L with |u |  p 
we we can write: 
 u = xyz  (x is a prefix, z is a suffix) 

 |y |  1  (mid-portion y is non-empty) 

 |xy|  p  (pumping occurs in first p 
letters) 

 xyiz  L  for all i  0 (can pump y-portion) 
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EX: Show that pal={xS*|x =x R} isn’t regular. 

1. Assume pal were regular 

2. Therefore it has a pumping no. p 

3. But… consider the string 0p10p.  Can this 
string be pumped in its first p letters?  The 
answer is NO because any augmenting of 
the first 0p-portion results in a non-
palindrome 

4. (2)(3)  <contradiction>  Therefore our 
assumption (1) was wrong and conclude 
that pal is not  a regular language  
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In general, to prove that L isn’t regular: 

1. Assume L were regular 

2. Therefore it has a pumping no. p 

3. Find a string pattern involving the length p 

in some clever way, and which cannot be 

pumped. This is the hard part. 

4. (2)(3)  <contradiction>  Therefore our 

assumption (1) was wrong and conclude 

that L is not  a regular language 
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Since parts 1, 2 and 4 are identical for any 

pumping lemma proof, following examples 

will only show part 3 of the proof. 
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EX:  Show that {a nb n| n = 0,1,2, … } is not 

regular. 

Part 3)  Consider a pb p.  By assumption, we 

can pump up within the first p letters of this 

string.  Thus we get more a’s than b’s in the 

resulting string, which breaks the pattern. 
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Sometimes it is useful to pump-down instead 
of up.  In pumping down we simply erase the 
y  portion of the pattern string.  This is 
allowed by setting i = 0 in the pumping 
lemma: 

EX:  Show that {a mb n| m > n} is not regular. 

Part 3)  Consider a p+1b p.  By assumption, we 
can pump down within the first p letters of 
this string.  As by assumption y is non-empty, 
we must decrease the number of a’s in the 
pattern, meaning that the number of a’s is 
less than or equal to the number of b’s, 
which breaks the pattern! 
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Sometimes we have to look at the resulting 
pump-ups more carefully: 

EX:  Show that {1n| n is a prime number} is not 
regular. 

Part 3)  Given p, choose a prime number n 
bigger than p.  Consider 1n.  By assumption, 
we can pump within the first p letters of this 
string so we can pump 1n.  Let m be the 
length of the pumped portion x.  Pumping i 
times (i = 0 means we pump-down) results in 
the string 1(n-m)+im =1n+(i-1)m. 

Q:  Find an i  making the exponent non-prime. 
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A:  Set i = n + 1.  Then the pumped-

up string is  

1n+(i-1)m =1n+(n+1-1)m =1n+nm=1n(1+m) 

Therefore the resulting exponent is 

not a prime, which breaks the 

pattern. 
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Consider a graph with n  vertices.  Suppose you 

tour around visiting a certain number of 

nodes. 

Q:  How many vertices can you visit before you 

are forced to see some vertex twice? 
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A:  If you visit n+1 vertices, you must have 

seen some vertex twice. 

Q:  Why? 
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A:  The pigeonhole principle. 

More precisely.  Your visiting n+1 vertices 

defines the following function: 

f : {1, 2, 3, … , n+1}  {size-n set} 

f (i ) = i ‘th vertex visited 

Since domain is bigger than codomain, cannot 

be one-to-one.  
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Now consider an accepted string u.  By 
assumption L is regular so let M be the FA 
accepting it.  Let p = |Q | = no. of states 
in M.  Suppose |u|  p.  The path labeled 
by u visits p+1 states in its first p letters. 
Thus u must visit some state twice.  The 
sub-path of u connecting the first and 
second visit of the vertex is a loop, and 
gives the claimed string y that can be 
pumped within the first p letters. 
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