

Minimization Algorithm contd.

Minimization Algorithm Example

Minimization Algorithm

 Guarantees smallest possible DFA for a given

regular language

 Proof of this fact (Time allowing)

Pumping Lemma

 Gives a way of determining when certain languages

are non-regular

 A direct consequence of applying pigeonhole

principle to automata (Time allowing)

3

Consider the accept states c and g. They are both

sinks meaning that any string which ever reaches

them is guaranteed to be accepted later.

Q: Do we need both states?

4

a

b

1

d

0,1

e

0,1

1

c

0,1

g f

0

0

0

0

1

1

A: No, they can be unified as illustrated below.

Q: Can any other states be unified because any

subsequent string suffixes produce identical results?

5

a

b

1

d 0,1 e
1

0,1

cg

f

0

0 0

0

1

1

A: Yes, b and f. Notice that if you’re in b or f then:

1. if string ends, reject in both cases

2. if next character is 0, forever accept in both cases

3. if next character is 1, forever reject in both cases

So unify b with f.

6

a

b

1

d 0,1 e
1

0,1

cg

f

0

0 0

0

1

1

Intuitively two states are equivalent if all

subsequent behavior from those states is

the same.

Q: Come up with a formal characterization of

state equivalence.

7

a

0,1

d 0,1 e
1

0,1

cg

bf

0

0

1

DEF: Two states q and q’ in a DFA M = (Q, S, d,

q0, F) are said to be equivalent (or

indistinguishable) if for all strings u S*, the

states on which u ends on when read from q

and q’ are both accept, or both non-accept.

Equivalent states may be glued together without

affecting M’ s behavior.

8

Q: Any other ways to simplify the automaton?

9

a

0,1

d 0,1 e
1

0,1

cg

bf

0

0

1

A: Get rid of d.

Getting rid of unreachable useless states doesn’t

affect the accepted language.

10

a

0,1

0,1 e

0,1

cg

bf
0

1

DEF: An automaton is irreducible if
 it contains no useless states, and

 no two distinct states are equivalent.

The goal of minimization algorithm is to create
irreducible automata from arbitrary ones. Later:
remarkably, the algorithm actually produces
smallest possible DFA for the given language,
hence the name “minimization”.

The minimization algorithm reverses previous
example. Start with least possible number of
states, and create new states when forced to.

Explain with a game:

11

0. All useless players are disqualified.
1. Game proceeds in rounds.
2. Start with 2 teams: ACCEPT vs. REJECT.
3. Each round consists of sub-rounds –one sub-

round per team.
4. Two members of a team are said to agree if

for a given label, they want to pass the buck
to same team. Otherwise, disagree.

5. During a sub-round, disagreeing members split
off into new maximally agreeing teams.

6. If a round passes with no splits, STOP.

12

13

a

b

1

d

0,1

e

0,1

1

c

0,1

g f

0

0

0

0

1

1

DFA minimize(DFA (Q, S, d, q0, F))

 remove any state q unreachable from q0

 Partition P = {F, Q - F }

 boolean Consistent = false

 while(Consistent == false)

 Consistent = true

 for(every Set S P, char a S, Set T P)

 Set temp = {q T | d(q,a) S }

 if (temp != Ø && temp != T)

 Consistent = false

 P = (P -T){temp,T-temp}

 return defineMinimizor((Q, S, d, q0, F), P)

14

DFA defineMinimizor

 (DFA (Q, S, d, q0, F), Partition P)

 Set Q’ =P

 State q’0 = the set in P which contains q0

 F’ = { S P | S F }

 for (each S P, a S)

 define d’ (S,a) = the set T P which contains

 the states d’(S,a)

 return (Q’, S, d’, q’0, F’)

15

Start with a DFA

16

 Miniature version

17

Split into two teams.

ACCEPT

 vs.

REJECT

18

0-label doesn’t split

up any teams

19

1-label splits up

REJECT's

20

No further splits. HALT!

Start team

contains

original

start

21

States of the minimal automata are

remaining teams. Edges are

consolidated across each team. Accept

states are break-offs from

original ACCEPT team.

22

100100101

23

100100101

24

100100101

25

100100101

26

100100101

27

100100101

28

100100101

29

100100101

30

100100101

31

100100101

ACCEPTED.

32

10000

33

10000

34

10000

35

10000

36

10000

37

10000

REJECT.

38

Previous algorithm guaranteed to produce an

irreducible FA. Why should that FA be the

smallest possible FA for its accepted

language?

Analogous question in calculus: Why should a

local minimum be a global minimum?

Usually not the case!

39

THM (Myhill-Nerode): The minimization
algorithm produces the smallest possible
automaton for its accepted language.

Proof. Show that any irreducible
automaton is the smallest for its accepted
language L:

We say that two strings u,v S* are
indistinguishable if for all suffixes x, ux
is in L exactly when vx is.

Notice that if u and v are distinguishable,
the path from their paths from the start
state must have different endpoints.

40

Consequently, the number of states in any
DFA for L must be as great as the number
of mutually distinguishable strings for L.

But an irreducible DFA has the property that
every state gives rise to another mutually
distinguishable string!

Therefore, any other DFA must have at least
as many states as the irreducible DFA
 •

Let’s see how the proof works on a previous
example:

41

The “spanning tree of strings” {e,0,01,00} is a

mutually distinguishable set (otherwise

redundancy would occur and hence DFA would be

reducible). Any other DFA for L has 4 states.

42

a

0,1

0,1 e

0,1

cg

bf
0

1

Consider the language

L1 = 01* = {0, 01, 011, 0111, … }

The string 011 is said to be pumpable in L1
because can take the underlined
portion, and pump it up (i.e. repeat) as
much as desired while always getting
elements in L1.

Q: Which of the following are pumpable?

1. 01111

2. 01

3. 0

43

44

0
0

1

0

1. Pumpable: 01111, 01111, 01111, 01111, etc.

2. Pumpable: 01

3. 0 not pumpable because most of 0* not in L1

Define L2 by the following automaton:

Q: Is 01010 pumpable?

45

0
0

1

0

A: Pumpable: 01010, 01010. Underlined
substrings correspond to cycles in the FA!

 Cycles in the FA can be repeated arbitrarily
often, hence pumpable.

Let L3 = {011,11010,000, e}

Q: Which strings are pumpable?

46

A: None! When pumping any string non-
trivially, always result in infinitely many
possible strings. So no pumping can go
on inside a finite set.

Pumping Lemma give a criterion for when
strings can be pumped:

THM: Given a regular language L, there is a
number p (called the pumping number)
such that any string in L of length p is
pumpable within its first p letters. In
other words, for all u L with |u | p
we we can write:
 u = xyz (x is a prefix, z is a suffix)

 |y | 1 (mid-portion y is non-empty)

 |xy| p (pumping occurs in first p
letters)

 xyiz L for all i 0 (can pump y-portion)

47

EX: Show that pal={xS*|x =x R} isn’t regular.

1. Assume pal were regular

2. Therefore it has a pumping no. p

3. But… consider the string 0p10p. Can this
string be pumped in its first p letters? The
answer is NO because any augmenting of
the first 0p-portion results in a non-
palindrome

4. (2)(3) <contradiction> Therefore our
assumption (1) was wrong and conclude
that pal is not a regular language

48

In general, to prove that L isn’t regular:

1. Assume L were regular

2. Therefore it has a pumping no. p

3. Find a string pattern involving the length p

in some clever way, and which cannot be

pumped. This is the hard part.

4. (2)(3) <contradiction> Therefore our

assumption (1) was wrong and conclude

that L is not a regular language

49

Since parts 1, 2 and 4 are identical for any

pumping lemma proof, following examples

will only show part 3 of the proof.

50

EX: Show that {a nb n| n = 0,1,2, … } is not

regular.

Part 3) Consider a pb p. By assumption, we

can pump up within the first p letters of this

string. Thus we get more a’s than b’s in the

resulting string, which breaks the pattern.

51

Sometimes it is useful to pump-down instead
of up. In pumping down we simply erase the
y portion of the pattern string. This is
allowed by setting i = 0 in the pumping
lemma:

EX: Show that {a mb n| m > n} is not regular.

Part 3) Consider a p+1b p. By assumption, we
can pump down within the first p letters of
this string. As by assumption y is non-empty,
we must decrease the number of a’s in the
pattern, meaning that the number of a’s is
less than or equal to the number of b’s,
which breaks the pattern!

52

Sometimes we have to look at the resulting
pump-ups more carefully:

EX: Show that {1n| n is a prime number} is not
regular.

Part 3) Given p, choose a prime number n
bigger than p. Consider 1n. By assumption,
we can pump within the first p letters of this
string so we can pump 1n. Let m be the
length of the pumped portion x. Pumping i
times (i = 0 means we pump-down) results in
the string 1(n-m)+im =1n+(i-1)m.

Q: Find an i making the exponent non-prime.

53

A: Set i = n + 1. Then the pumped-

up string is

1n+(i-1)m =1n+(n+1-1)m =1n+nm=1n(1+m)

Therefore the resulting exponent is

not a prime, which breaks the

pattern.

54

Consider a graph with n vertices. Suppose you

tour around visiting a certain number of

nodes.

Q: How many vertices can you visit before you

are forced to see some vertex twice?

55

A: If you visit n+1 vertices, you must have

seen some vertex twice.

Q: Why?

56

A: The pigeonhole principle.

More precisely. Your visiting n+1 vertices

defines the following function:

f : {1, 2, 3, … , n+1} {size-n set}

f (i) = i ‘th vertex visited

Since domain is bigger than codomain, cannot

be one-to-one.

57

Now consider an accepted string u. By
assumption L is regular so let M be the FA
accepting it. Let p = |Q | = no. of states
in M. Suppose |u| p. The path labeled
by u visits p+1 states in its first p letters.
Thus u must visit some state twice. The
sub-path of u connecting the first and
second visit of the vertex is a loop, and
gives the claimed string y that can be
pumped within the first p letters.

58

