COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Minimization of FA
- Minimization Algorithm
 - Guarantees smallest possible DFA for a given regular language
 - Proof of this fact.

EXAMPLE ONE

EXAMPLE TWO

Consider the accept states c and g. They are both sinks meaning that any string which ever reaches them is guaranteed to be accepted later.

- A: No, they can be unified as illustrated below.
- Q: Can any other states be unified because any subsequent string suffixes produce identical results?

- A: Yes, b and f. Notice that if you're in b or f then:
- 1. if string ends, reject in both cases

b

- 2. if next character is 0, forever accept in both cases
- 3. if next character is 1, forever reject in both cases

So unify b with f.

Intuitively two states are equivalent if all subsequent behavior from those states is the same.

Q: Come up with a formal characterization of state equivalence.

EQUIVALENT STATES. DEFINITION

DEF: Two states q and q' in a DFA $M = (Q, \Sigma, \delta, q_0, F)$ are said to be *equivalent* (or *indistinguishable*) if for all strings $u \in \Sigma^*$, the states on which u ends on when read from q and q' are both accept, or both non-accept. Equivalent states may be glued together without affecting M' s behavior.

FINISHING THE EXAMPLE

Q: Any other ways to simplify the automaton?

USELESS STATES

A: Get rid of d.

Getting rid of unreachable *useless states* doesn't affect the accepted language.

MINIMIZATION ALGORITHM. GOALS

DEF: An automaton is *irreducible* if

- it contains no useless states, and
- no two distinct states are equivalent.
- The goal of minimization algorithm is to create irreducible automata from arbitrary ones. Later: remarkably, the algorithm actually produces smallest possible DFA for the given language, hence the name "minimization".
- The minimization algorithm *reverses* previous example. Start with least possible number of states, and create new states when forced to. Explain with a game:

MINIMIZATION ALGORITHM. (PARTITION REFINEMENT) CODE DFA minimize(DFA ($Q, \Sigma, \delta, q_0, F$)) remove any state q unreachable from q_0 Partition $P = \{F, Q - F\}$ boolean Consistent = false while(Consistent == false) Consistent = true for (every Set $S \in P$, char $a \in \Sigma$, Set $T \in P$) Set temp = { $q \in T \mid \delta(q,a) \in S$ } if (temp $!= \emptyset$ && temp != T) Consistent = false $P = (P - T) \cup \{\text{temp}, T - \text{temp}\}$ return defineMinimizor(($Q, \Sigma, \delta, q_0, F$), P)

MINIMIZATION ALGORITHM. (PARTITION REFINEMENT) CODE DFA defineMinimizor

(DFA ($Q, \Sigma, \delta, q_0, F$), Partition P) Set *Q*' =*P* State q'_0 = the set in P which contains q_0 $F' = \{ S \in P \mid S \subset F \}$ for (each $S \in P$, $a \in \Sigma$) define $\delta'(S,a)$ = the set $T \in P$ which contains the states $\delta'(S,a)$ return (Q', Σ , δ' , q'_0 , F')

MINIMIZATION EXAMPLE

Start with a DFA

MINIMIZATION EXAMPLE. END RESULT

States of the minimal automata are remaining teams. Edges are consolidated across each team. Accept states are break-offs from original ACCEPT team.

0,1

1

MINIMIZATION EXAMPLE. COMPARE 0,1 b 100100101 () 1 e 1 C 0,1 b 0,1 С е d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 100100101 () 1 a e 1 0,1 0,1 е d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 100100101 1 a e 1 d 0,1 0,1 е d

MINIMIZATION EXAMPLE. COMPARE 0,1 10010101 1 a e 1 C 0,1 0,1 е d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 1001_00101 () 1 a 1 d 0,1 b 0,1 С d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 100100101 () 1 a 1 d 0,1 b 0,1 С d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 100100101 () 1 a 1 d 0,1 b 0,1 С d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 100100101 () 1 a 1 d 0,1 b 0,1 С d

29

MINIMIZATION EXAMPLE. COMPARE 0,1 b 100100101 1 a 1 d 0,1 b 0,1 С d

MINIMIZATION EXAMPLE. COMPARE 0,1 100100101 a ACCEPTED. 1 0,1 b 0,1 С d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 10000 () 1 e С 1 d 0,1 b 0,1 С e d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 1,0000 () 1 e a С 1 0,1 0,1 e d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 10000 1 e a 1 d 0,1 0,1 e d

MINIMIZATION EXAMPLE. COMPARE 0,1 10000 () 1 a e С 1 d 0,1 0,1 e d

MINIMIZATION EXAMPLE. COMPARE 0,1 b 10000 1 a e 1 d 0,1 0,1 e d

MINIMIZATION EXAMPLE. COMPARE 0,1 10000 1 a е **REJECT.** 1 d 0,1 0,1 C