


 

Minimization of FA 

Minimization Algorithm 

 Guarantees smallest possible DFA for a given 

regular language 

 Proof of this fact. 
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Consider the accept states c and g.  They are both 

sinks meaning that any string which ever reaches 

them is guaranteed to be accepted later. 

Q:  Do we need both states? 
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A:  No, they can be unified as illustrated below. 

Q:  Can any other states be unified because any 

subsequent string suffixes produce identical results? 
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A:  Yes, b and f.  Notice that if you’re in b or f then: 

1. if string ends, reject in both cases 

2. if next character is 0, forever accept in both cases 

3. if next character is 1, forever reject in both cases 

So unify b with f. 
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Intuitively two states are equivalent  if all 

subsequent behavior from those states is 

the same. 

Q:  Come up with a formal characterization of 

state equivalence. 
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DEF:  Two states q and q’  in a DFA M = (Q, S, d, 

q0, F ) are said to be equivalent (or 

indistinguishable) if for all strings u  S*, the 

states on which u ends on when read from q 

and q’  are both accept, or both non-accept. 

Equivalent states may be glued together without 

affecting M’ s behavior. 
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Q:  Any other ways to simplify the automaton? 
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A:  Get rid of d. 

Getting rid of unreachable useless states doesn’t 

affect the accepted language. 
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DEF:  An automaton is irreducible if  
 it contains no useless states, and 

 no two distinct states are equivalent. 

The goal of minimization algorithm is to create 
irreducible automata from arbitrary ones. Later: 
remarkably, the algorithm actually produces 
smallest possible DFA for the given language, 
hence the name “minimization”. 

The minimization algorithm reverses previous 
example.  Start with least possible number of 
states, and create new states when forced to. 

Explain with a game: 
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DFA minimize(DFA (Q, S, d, q0, F ) ) 

  remove any state q unreachable from q0  

  Partition P = {F, Q - F }  

  boolean Consistent = false 

  while( Consistent == false ) 

    Consistent = true 

    for(every Set S  P, char a  S, Set T  P ) 

          Set temp = {q T | d(q,a) S } 

          if (temp != Ø  && temp != T )  

            Consistent = false 

            P = (P -T ){temp,T-temp} 

  return defineMinimizor( (Q, S, d, q0, F ), P ) 
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DFA defineMinimizor 

  (DFA (Q, S, d, q0, F ), Partition P ) 

  Set Q’ =P  

  State q’0 = the set in P  which contains q0 

  F’ = { S  P  | S  F } 

  for (each S  P, a  S) 

    define d’ (S,a) = the set T  P  which contains 

    the states d’(S,a) 

  return (Q’, S, d’, q’0, F’ ) 
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Start with a DFA 
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  Miniature version  
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Split into two teams. 

ACCEPT 

    vs. 

REJECT 
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0-label doesn’t split 

up any teams 
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1-label splits up 

REJECT's 
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No further splits.  HALT! 

Start team 

contains 

original 

start  
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States of the minimal automata are 

remaining teams.  Edges are 

consolidated across each team. Accept  

states are break-offs from 

original ACCEPT team. 
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REJECT. 
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