

Minimization of FA

Minimization Algorithm

 Guarantees smallest possible DFA for a given

regular language

 Proof of this fact.

3

Unreachable
state

4

Consider the accept states c and g. They are both

sinks meaning that any string which ever reaches

them is guaranteed to be accepted later.

Q: Do we need both states?

5

a

b

1

d

0,1

e

0,1

1

c

0,1

g f

0

0

0

0

1

1

A: No, they can be unified as illustrated below.

Q: Can any other states be unified because any

subsequent string suffixes produce identical results?

6

a

b

1

d 0,1 e
1

0,1

cg

f

0

0 0

0

1

1

A: Yes, b and f. Notice that if you’re in b or f then:

1. if string ends, reject in both cases

2. if next character is 0, forever accept in both cases

3. if next character is 1, forever reject in both cases

So unify b with f.

7

a

b

1

d 0,1 e
1

0,1

cg

f

0

0 0

0

1

1

Intuitively two states are equivalent if all

subsequent behavior from those states is

the same.

Q: Come up with a formal characterization of

state equivalence.

8

a

0,1

d 0,1 e
1

0,1

cg

bf

0

0

1

DEF: Two states q and q’ in a DFA M = (Q, S, d,

q0, F) are said to be equivalent (or

indistinguishable) if for all strings u  S*, the

states on which u ends on when read from q

and q’ are both accept, or both non-accept.

Equivalent states may be glued together without

affecting M’ s behavior.

9

Q: Any other ways to simplify the automaton?

10

a

0,1

d 0,1 e
1

0,1

cg

bf

0

0

1

A: Get rid of d.

Getting rid of unreachable useless states doesn’t

affect the accepted language.

11

a

0,1

0,1 e

0,1

cg

bf
0

1

DEF: An automaton is irreducible if
 it contains no useless states, and

 no two distinct states are equivalent.

The goal of minimization algorithm is to create
irreducible automata from arbitrary ones. Later:
remarkably, the algorithm actually produces
smallest possible DFA for the given language,
hence the name “minimization”.

The minimization algorithm reverses previous
example. Start with least possible number of
states, and create new states when forced to.

Explain with a game:

12

DFA minimize(DFA (Q, S, d, q0, F))

 remove any state q unreachable from q0

 Partition P = {F, Q - F }

 boolean Consistent = false

 while(Consistent == false)

 Consistent = true

 for(every Set S  P, char a  S, Set T  P)

 Set temp = {q T | d(q,a) S }

 if (temp != Ø && temp != T)

 Consistent = false

 P = (P -T){temp,T-temp}

 return defineMinimizor((Q, S, d, q0, F), P)

13

DFA defineMinimizor

 (DFA (Q, S, d, q0, F), Partition P)

 Set Q’ =P

 State q’0 = the set in P which contains q0

 F’ = { S  P | S  F }

 for (each S  P, a  S)

 define d’ (S,a) = the set T  P which contains

 the states d’(S,a)

 return (Q’, S, d’, q’0, F’)

14

Start with a DFA

15

 Miniature version 

16

Split into two teams.

ACCEPT

 vs.

REJECT

17

0-label doesn’t split

up any teams

18

1-label splits up

REJECT's

19

No further splits. HALT!

Start team

contains

original

start

20

States of the minimal automata are

remaining teams. Edges are

consolidated across each team. Accept

states are break-offs from

original ACCEPT team.

21

100100101

22

100100101

23

100100101

24

100100101

25

100100101

26

100100101

27

100100101

28

100100101

29

100100101

30

100100101

ACCEPTED.

31

10000

32

10000

33

10000

34

10000

35

10000

36

10000

REJECT.

37

