COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

The Myhill-Nerode Theorem

ISOMORPHISM OF DFAS

- $M = (Q_M, \Sigma, \delta_M, s_M, F_M), N = (Q_N, S, \delta_N, s_N, F_N)$: two DFAs
- M and N are said to be isomorphic if there is a (structure-preserving) bijection $f:Q_M \rightarrow Q_N$ s.t.
 - $f(s_M) = s_N$
 - $f(\delta_M(p,a)) = \delta_N(f(p),a)$ for all $p \in Q_M$, $a \in \Sigma$
 - $p \in F_M$ iff $f(p) \in F_N$.
- I.e., M and N are essentially the same machine up to renaming of states.
- Facts:
 - 1. Isomorphic DFAs accept the same set.
 - $\circ\,$ 2. if M and N are any two DFAs w/o inaccessible states accepting the same set, then the quotient automata M/ \approx and N/ \approx are isomorphic
 - 3. The DFA obtained by the minimization algorithm (lec. 14) is the minimal DFA for the set it accepts, and this DFA is unique up to isomorphism.

MYHILL-NERODE RELATIONS

- R: a regular set, M=(Q, Σ, δ,s,F): a DFA for R w/o inaccessible states.
- M induces an equivalence relation \equiv_{M} on Σ^* defined by

• $x \equiv M$ y iff $\Delta(s,x) = \Delta(s,y)$.

- i.e., two strings x and y are equivalent iff it is indistinguishable by running M on them (i.e., by running M with x and y as input, respectively, from the initial state of M.)
- Properties of \equiv_{M} :
 - **0.** \equiv_{M} is an equivalence relation on Σ^* .

(cf: \approx is an equivalence relation on states)

• 1. \equiv_{M} is a right congruence relation on Σ^* : i.e., for any $x, y \in \Sigma^*$ and $a \in \Sigma$, $x \equiv_{M} y \Rightarrow xa \equiv_{M} ya$.

• pf: if
$$x \equiv_M y \Rightarrow \Delta(s,xa) = \delta(\Delta(s,x),a) = \delta(\Delta(s,y),a) = \Delta(s, ya)$$

=> $xa \equiv_M ya$.

PROPERTIES OF THE MYHILL-NERODE RELATIONS

• Properties of \equiv_{M} :

• 2. \equiv_{M} refines R. I.e., for any $x, y \in \Sigma^*$,

• $x \equiv_M y \Rightarrow x \in R \text{ iff } y \in R$

- pf: $x \in R$ iff $\Delta(s,x) \in F$ iff $\Delta(s,y) \in F$ iff $y \in R$.
- Property 2 means that every \equiv_{M} -class has either all its elements in R or none of its elements in R. Hence R is a union of some \equiv_{M} -classes.
- 3. It is of finite index, i.e., it has only finitely many equivalence classes. Σ^*
- (i.e., the set { $[x] = M | x \in \Sigma^*$ }
- is finite.
- pf: $x \equiv_M y$ iff $\Delta(s,x) = \Delta(s,y) = q$
- for some $q \in Q$. Since there
- are only |Q| states, hence
- Σ^* has $|\mathbf{Q}| \equiv_{\mathsf{M}}$ -classes

DEFINITION OF THE MYHILL-NERODE RELATION

- = : an equivalence relation on Σ^* ,
 - **R**: a language over Σ^* .
- = is called an Myhill-Nerode relation for R if it satisfies property 1~3. i.e., it is a right congruence of finite index refining R.
- Fact: R is regular iff it has a Myhill-Nerode relation.
 - (to be proved later)
 - 1. For any DFA M accepting R, \equiv_M is a Myhill-Nerode relation for R.
 - 2. If = is a Myhill-Nerode relation for R then there is a DFA M_{\pm} accepting R.
 - 3. The constructions $M \to \equiv_M$ and $\equiv \to M_{\equiv}$ are inverse up to isomorphism of automata. (i.e. $\equiv = \equiv_{M_{\equiv}}$ and $M = M_{\equiv_M}$)

$\mathsf{FROM} \equiv \mathsf{TO} \mathsf{M} \equiv$

• R: a language over Σ , \equiv : a Myhill-Nerode relation for R;

- the \equiv -class of the string x is $[x]_{\equiv} =_{def} \{y \mid x \equiv y\}$.
- Note: Although there are infinitely many strings, there are only finitely many = -classes. (by property of finite index)

• Define DFA $M \equiv = (Q, \Sigma, \delta, s, F)$ where

•
$$\mathbf{Q} = \{ [\mathbf{x}] \mid \mathbf{x} \in \Sigma^* \}, \quad \mathbf{s} = [\varepsilon],$$

• $F = \{[x] \mid x \in R \}, \quad \delta([x],a) = [xa].$

• Notes:

- 0: M_{\pm} has |Q| states, each corresponding to an \equiv -class of \equiv . Hence the more classes \equiv has, the more states $M\equiv$ has.
- 1. By right congruence of \equiv , δ is well-defined, since, if y,z \in [x] => y \equiv z \equiv x => ya \equiv za \equiv xa => ya, za \in [xa]
- 2. $x \in R$ iff $[x] \in F$.
- pf: =>: by definition of $M \equiv$;
- <=: $[x] \in F \Rightarrow \exists y \text{ s.t. } y \in R \text{ and } x \equiv y \Rightarrow x \in R.$ (property 2)

$M \rightarrow \equiv M AND \equiv M ARE INVERSES$

Lemma 15.1: $\Delta([x],y) = [xy]$

pf: Induction on |y|. Basis: $\Delta([x], \varepsilon) = [x] = [x\varepsilon]$. Ind. step: $\Delta([x], ya) = \delta(\Delta([x], y), a) = \delta([xy], a) = [xya]$. QED

Theorem 15.2: $L(M_{=}) = R$. pf: $x \in L(M_{=})$ iff $\Delta([\varepsilon], x) \in F$ iff $[x] \in F$ iff $x \in R$. QED

Lemma 15.3: \equiv : a Myhill-Nerode relation for R, M: a DFA for R w/o inaccessible states, then

- 1. if we apply the construction $\equiv \rightarrow M_{\equiv}$ to \equiv and then apply $M \rightarrow \equiv_M$ to the result, the resulting relation $\equiv_{M_{\equiv}}$ is identical to \equiv .
- 2. if we apply the construction $M \to \equiv_M$ to M and then apply $\equiv \to M_{\equiv}$ to the result, the resulting relation $M \equiv_M$ is identical to M.

Pf: (of lemma 15.3) (1) Let $M_{=} = (Q, \Sigma, \delta, s, F)$ be the DFA constructed as described above. then for any x,y in Σ^* ,

 $x \equiv_{M=} y \text{ iff } \Delta([\varepsilon], x) = \Delta([\varepsilon], y) \text{ iff } [x] = [y] \text{ iff } x \equiv y.$

(2) Let M = (Q, Σ , δ , s, F) and let M \equiv_M = (Q', Σ , δ ', s', F'). Recall that

•
$$[x] = \{y \mid y \equiv_M x\} = \{y \mid \Delta(s,y) = \Delta(s,x)\}$$

• Q' = { $[x] | x \in \Sigma^*$ }, s' = $[\varepsilon]$, F' = { $[x] | x \in R$ }

Now let f:Q'-> Q be defined by $f([x]) = \Delta(s,x)$.

• 1. By def., [x] = [y] iff $\Delta(s,x) = \Delta(s,y)$, so f is well-defined and 1-1. Since M has no inaccessible state, f is onto.

• 2.
$$f(s') = f([\varepsilon]) = \Delta(s, \varepsilon) = s$$

- 3. $[x] \in F' \iff x \in R \iff \Delta(s,x) \in F \iff f([x]) \in F.$
- 4. $f(\delta'([x],a)) = f([xa]) = \Delta(s,xa) = \delta(\Delta(s,x),a) = \delta(f([x]), a)$
- By 1~4, f is an isomorphism from $M \equiv_M$ to M. QED

RELATIONS B/T DFAS AND MYHILL-NERODE RELATIONS

- Theorem 15.4: R: a regular set over Σ . Then up to isomorphism of FAs, there is a 1-1 correspondence b/t DFAs w/o inaccessible states accepting R and Myhill-Nerode relations for R.
 - I.e., Different DFAs accepting R correspond to different Myhill-Nerode relations for R, and vice versa.
 - We now show that there exists a coarsest Myhill-Neorde relation \equiv_R for any R, which corresponds to the unique minimal DFA for R.

Def 16.1: \equiv_1 , \equiv_2 : two relations. If $\equiv_1 \subseteq \equiv_2$ (i.e., for all x,y, x $\equiv_1 y \Rightarrow x \equiv_2 y$) we say \equiv_1 refines \equiv_2 .

- Note:1. If \equiv_1 and \equiv_2 are equivalence relations, then \equiv_1 refines \equiv_2 iff every \equiv_1 -class is included in a \equiv_2 -class.
- 2. The refinement relation on equivalence relations is a partial order. (since \subseteq is ref, transitive and antisymmetric).

THE REFINEMENT RELATION

Note:

3. If , $\equiv_1 \subseteq \equiv_2$, we say \equiv_1 is the finer and \equiv_2 is the coarser of the two relations.

4. The finest equivalence relation on a set U is the identity relation $I_U = \{(x,x) \mid x \in U\}$

5. The coarsest equivalence relation on a set U is universal relation $U^2 = \{(x,y) \mid x, y \in U\}$

Def. 16.1: R: a language over Σ (possibly not regular). Define a relation \equiv_{R} over Σ^* by

 $x \equiv_{R} y \text{ iff for all } z \in \Sigma^{*} (xz \in R \iff yz \in R)$

i.e., x and y are related iff whenever appending the same string to both of them, the resulting two strings are either both in R or both not in R.

PROPERTIES OF \equiv _R

Lemma 16.2: Properties of \equiv_{R} :

- 0. \equiv_{R} is an equivalence relation over Σ^* .
- 1. \equiv_{R} is right congruent
- 2. \equiv_{R} refines R.
- 3. \equiv_{R} the coarsest of all relations satisfying 0,1 and 2.
- [4. If R is regular => \equiv_{R} is of finite index.]

Pf: (0) : trivial; (4) immediate from (3) and theorem 15.2.

(1)
$$x \equiv_R y \Rightarrow$$
 for all $z \in \Sigma^* (xz \in R \iff yz \in R)$
 $\Rightarrow \forall a \forall w (xaw \in R \iff yaw \in R)$
 $\Rightarrow \forall a (xa \equiv_R ya)$
(2) $x \equiv_R y \Rightarrow (x \in R \iff y \in R)$
(3) Let \equiv be any relation satisfying 0~2. Then
 $x \equiv y \Rightarrow \forall z \ xz \equiv yz \quad \cdots \quad by ind. \text{ on } |z| \text{ using property (1)}$
 $\Rightarrow \forall z (xz \in R \iff yz \in R) \quad \cdots \quad by (2) \quad \Rightarrow x \equiv_R y.$

MYHILL-NERODE THEOREM

Thorem16.3: Let R be any language over Σ . Then the following statements are equivalent:

(a) R is regular;

(b) There exists a Myhill-Nerode relation for R;

(c) the relation \equiv_{R} is of finite index.

pf: (a) =>(b) : Let M be any DFA for R. The construction $M \rightarrow \equiv_M$ produces a Myhill-Nerode relation for R. (b) => (c): By lemma 16.2, any Myhill-Nerode relation for R is of finite index and refines R => \equiv_R is of finite index.

(c)=>(a): If \equiv_R is of finite index, by lemma 16.2, it is a Myhill-Nerode relation for R, and the construction $\equiv \rightarrow M_{\pm}$ produce a DFA for R.

RELATIONS B/T \equiv _R **AND COLLAPSED MACHINE**

Note: 1. Since \equiv_{R} is the coarsest Myhill-Nerode relation for a regular set R, it corresponds to the DFA for R with the fewest states among all DFAs for R.

(i.e., let M = (Q,...) be any DFA for R and M = (Q',...) the DFA induced by \equiv_R , where Q' = the set of all \equiv_R -classes

==>
$$|Q| = |$$
 the set of \equiv_{M} -classes $| >= |$ the set of \equiv_{R} -classes $| = |Q'|$.

Fact: M=(Q,S,s,d,F): a DFA for R that has been collapsed (i.e., $M = M/\approx$). Then $\equiv_R \equiv \equiv_M$ (hence M is the unique DFA for R with the fewest states). pf: $x \equiv_R y$ iff $\forall z \in \Sigma^* (xz \in R \iff yz \in R)$ iff $\forall z \in \Sigma^* (\Delta(s,xz) \in F \iff \Delta(s,yz) \in F)$ iff $\forall z \in \Sigma^* (\Delta(\Delta(s,x),z) \in F \iff \Delta(\Delta(s,y),z) \in F)$ iff $\Delta(s,x) \approx \Delta(s,y)$ iff $\Delta(s,x) = \Delta(s,y)$ -- since M is collapsed iff $x \equiv_M y$ Q.E.D.

AN APPLICATION OF THE MYHILL-NERODE RELATION

- Can be used to determine whether a set R is regular by determining the number of \equiv_{R} -classes.
- Ex: Let A = $\{a^n b^n | n \ge 0 \}$.
 - If $k \neq m \Rightarrow a^k$ not $\equiv_A a^m$, since $a^k b^k \in A$ but $a^m b^k \notin A$. Hence \equiv_A is not of finite index => A is not regular.
 - In fact \equiv_A has the following \equiv_A -classes:
 - $\circ \quad G_k = \{a^k\}, \ k \geq \ 0$
 - $\circ \quad H_k = \{a^{n+k} \ b^n \ | \ n \geq 1 \ \}, \ k \geq 0$
 - $\circ \quad E = \Sigma^* \ \text{-} \ U_{k \, \geq \, 0} \ (G_k U \ H_k) = \Sigma^* \ \text{-} \ \{a^m b^n \ \mid \ m \geq n \geq 0 \ \}$

UNIQUENESS OF MINIMAL NFAS

• Problem: Does the conclusion that minimal DFA accepting a language is unique apply to NFA as well ?

Ans: ?

MINIMAL NFAS ARE NOT UNIQUE UP TO ISOMORPHISM

- Example: let $L = \{ x1 | x \in \{0,1\} \}^*$
- What is the minimum number k of states of all FAs accepting L ?

Analysis : $k \neq 1$. Why ?

COLLAPSING NFAS

- Minimal NFAs are not unique up to isomorphism
- Part of the Myhill-Nerode theorem generalize to NFAs based on the notion of *bisimulation*.

Bisimulation:

Def: $M=(Q_M, \Sigma, \delta_M, S_M, F_M)$, $N=(Q_N, \Sigma, \delta_N, S_N, F_N)$: two NFAs,

 \approx : a binary relation from Q_M to Q_N .

- For $B \subseteq Q_N$, define $C_{\approx}(B) = \{p \in Q_M \mid \exists q \in B \ p \approx q \}$
- For $A \subseteq Q_M$, define $C_{\approx}(A) = \{q \in Q_N \mid \exists P \in A \ p \approx q \}$ Extend \approx to subsets of Q_M and Q_N as follows:
- $A \approx B <=>_{def} A \subseteq C_{\approx}(B)$ and $B \subseteq C_{\approx}(A)$
- iff $\forall p \in A \exists q \in B \text{ s.t. } p \approx q \text{ and } \forall q \in B \exists p \in A \text{ s.t. } p \approx q$

BISIMULATION

- Def B.1: A relation \approx is called a bisimulation if
 - 1. $S_M \approx S_N$
 - 2. if $p \approx q$ then $\forall a \in \Sigma$, $\delta_M(p,a) \approx \delta_N(q,a)$
 - 3. if $p \approx q$ then $p \in F_M$ iff $q \in F_N$.
- M and N are *bisimilar* if there exists a bisimulation between them.
- For each NFA M, the *bisimilar class* of M is the family of all NFAs that are bisimilar to M.
- Properties of bisimulaions:
 - 1.Bisimulation is symmetric: if \approx is a bisimulation b/t M and N, then its reverse {(q,p)|p \approx q} is a bisimulation b/t N and M.
 - **2.**Bisimulation is transitive: $M \approx_1 N$ and $N \approx_2 P \implies M \approx_1 \approx_2 P$
 - 3. The union of any nonempty family of bisimulation b/t M and N is a bisimulation b/t M and N.

PROPERTIES OF BISIMULATIONS

Pf: 1,2: direct from the definition. (3): Let $\{\approx_i \mid i \in I\}$ be a nonempty indexed set of bisimulations b/t M and N. Define $\approx =_{def} U_{i \in I} \approx_i$. Thus $p \approx q$ means $\exists i \in I p \approx q$. 1. Since I is not empty, $S_M \approx_i S_N$ for some $i \in I$, hence $S_M \approx S_N$ 2. If $p \approx q \Rightarrow \exists i \in I \ p \approx i \ q \Rightarrow \delta_M(p,a) \approx i \delta_N(q,a) \Rightarrow \delta_M(p,a) \approx \delta_N(q,a)$ 3. If $p \approx q \Rightarrow p \approx q$ for some $i \Rightarrow (p \in F_M \iff q \in F_N)$ Hence \approx is a bisimulation b/t M and N. Lem B.3: \approx : a bisimulation b/t M and N. If A \approx B, then for all x in Σ^* , $\Delta(A,x) \approx \Delta(B,x).$ pf: by induction on |x|. Basis: 1. $x = \varepsilon \implies \Delta(A, \varepsilon) = A \approx B = \Delta(B, \varepsilon)$. 2. x = a : since A \subseteq C₂(B), if p \in A => \exists q \in B with p \approx q. => $\delta_M(p,a) \subseteq C_{\approx}(\delta_N(q,a)) \subseteq C_{\approx}(\Delta_N(B,a))$. => $\Delta_M(A,a) = U_{p \in A} \delta_M(p,a) \subseteq C_{\approx}(\Delta_N(B,a))$. By a symmetric argument, $\Delta_N(B,a) \subseteq C_{\approx}(\Delta_M(A,a))$. So Δ_{M} (A,a) $\approx \Delta_{N}$ (B,a)).

BISIMILAR AUTOMATA ACCEPT THE SAME SET.

3. Ind. case: assume $\Delta_M(A,x) \approx \Delta_N(B,x)$. Then $\Delta_M(A,xa) = \Delta_M(\Delta_M(A,x), a) \approx \Delta_N(\Delta_N(B,x),a) = \Delta_N(B,xa)$. Q.E.D.

Theorem B.4: Bisimilar automata accept the same set. Pf: assume \approx : a bisimulation b/t two NFAs M and N. Since $S_M \approx S_N \implies \Delta_M (S_M, x) \approx \Delta_N (S_N, x)$ for all x. Hence for all x, $x \in L(M) \iff \Delta_M (S_M, x) \cap F_M \neq \{\} \iff \Delta_N (S_N, x) \cap F_N \neq \{\} \iff x \in L(N)$. Q.E.D.

Def: \approx : a bisimulation b/t two NFAs M and N

The support of \approx in M is the states of M related by \approx to some state of N, i.e., $\{p \in Q_M \mid p \approx q \text{ for some } q \in Q_N\} = C_{\approx}(Q_N)$.

AUTOBISIMULATION

- Lem B.5: A state of M is in the support of all bisimulations involving M iff it is accessible.
- Pf: Let \approx be any bisimulation b/t M and another FA.
- By def B.1(1), every start state of M is in the support of \approx .
- By B.1(2), if p is in the support of \approx , then every state in $\delta(p,a)$ is in the support of \approx . It follows by induction that every accessible state is in the support of \approx .
- Conversely, since the relation $B.3 = \{(p,p) \mid p \text{ is accessible}\}\$ is a bisimulation from M to M and all inaccessible states of M are not in the support of B.3. It follows that no inaccessible state is in the support of all bisimulations. Q.E.D.

Def. B.6: An autobisimulation is a bisimlation b/t an automaton and itself.

PROPERTY OF AUTOBISIMULATIONS

Theorem B.7: Every NFA M has a coarsest autobisimulation \equiv_M , which is an equivalence relation.

Pf: let B be the set of all autobisimulations on M.

B is not empty since the identity relation $I_M = \{(p,p) | p \text{ in } Q\}$ is an autobisimulation.

- 1. let \equiv_{M} be the union of all bisimualtions in B. By Lem B.2(3), \equiv_{M} is also a bisimualtion on M and belongs to B. So \equiv_{M} is the largest (i.e., coarsest) of all relations in B.
- 2. =_M is ref. since for all state $p(p,p) \in I_M \subseteq =_M$.
- 3. =_M is sym. and tran. by Lem B.2(1,2).
- 4. By 2,3, \equiv_M is an equivalence relation on Q.

FIND MINIMAL NFA BISIMILAR TO A NFA

• $M = (Q, \Sigma, \delta, S, F)$: a NFA.

- Since accessible subautomaton of M is bisimilar to M under the bisimulation B.3, we can assume wlog that M has no inaccessible states.
- Let = be =_M, the maximal autobisimulation on M. for p in Q, let [p] = {q | p = q } be the =-class of p, and let « be the relation relating p to its =-class [p], i.e., « ⊆ Qx2^Q =_{def} {(p,[p]) | p in Q } for each set of states A ⊆ Q, define [A] = {[p] | p in A }. Then
 Lem B.8: For all A,B ⊆ Q,
 1. A ⊆ C₌ (B) iff [A] ⊆ [B], 2. A = B iff [A] = [B], 3. A « [A]

■ 1. A ⊆ C₌(B) Iff [A] ⊆ [B], 2. A ≡ B iff [A] = [B], 3. A « [A] pf:1. A ⊆ C₌(B) <=> \forall p in A \forall q in B s.t. p ≡ q <=> [A] ⊆ [B] 2. Direct from 1 and the fact that A ≡ B iff A ⊆ C₌(B) and B ⊆ C₌(A) 3. p ∈ A => p ∈ [p] ∈ [A], B ∈ [A] => ∃ p ∈ A with p « [p] = B.

MINIMAL NFA BISIMILAR TO AN NFA (CONT'D)

• Now define $M' = \{Q', S, d', S', F'\} = M/\equiv$ where

•
$$Q' = [Q] = \{[p] \mid p \in Q\},\$$

• S' = [S] = {[p] |
$$p \in S$$
}, F' = [F] = {[p] | $p \in F$ } and

Note that δ ' is well-defined since

 $[p] = [q] \Rightarrow p \equiv q \Rightarrow \delta(p,a) \equiv \delta(q,a) \Rightarrow [\delta(p,a)] = [\delta(q,a)]$ => $\delta'([p],a) = \delta'([q],a)$

Lem B.9: The relation « is a bisimulation b/t M and M'.

of: 1. By B.8(3):
$$S \subseteq [S] = S'$$
.

2. If
$$p \ll [q] \Rightarrow p \equiv q \Rightarrow \delta(p,a) \equiv \delta(q,a)$$

=>
$$[\delta(p,a)] = [\delta(q,a)] => \delta(p,a) \ll [\delta(p,a)] = [\delta(q,a)].$$

3. if
$$p \in F \Rightarrow [p] \in [F] = F'$$
 and

if $[p] \in F'= [F] \Rightarrow \exists q \in F$ with $[q] = [p] \Rightarrow p \equiv q \Rightarrow p \in F$. By theorem B.4, M and M' accept the same set.

AUTOBISIMULATION

- Lem B.10: The only autobisimulation on M' is the identity relation =.
- Pf: Let ~ be an autobisimulation of M'. By Lem B.2(1,2), the relation « ~ » is a bisimulation from M to itself.
- Now if there are [p] ≠ [q] (hence not p = q) with [p] ~ [q]
 > p « [p] ~ [q] » q => p « ~ » q => « ~ » ⊄ =, a contradiction !.
 On the other hand, if [p] not~ [p] for some [p] => for any [q], [p] not~ [q] (by 1. and the premise)
 => p not (« ~ ») q for any q (p « [p] [q] » q)
 => p is not in the support of « ~ »
- => p is not accessible, a contradiction.

QUOTIENT AUTOMATA ARE MINIMAL FAS

- Theorem B11: M: an NFA w/t inaccessible states, \equiv : maximal autobisimulation on M. Then M' = M / \equiv is the minimal automata bisimilar to to M and is unique up to isomorphism.
- pf: N: any NFA bisimilar to M w/t inaccessible states.
 - N' = N/ \equiv_{N} where \equiv_{N} is the maximal autobisimulation on N.
 - => M' bisimiar to M bisimilar to N bisimiar to N'.

Let \approx be any bisimulation b/t M' and N'.

- Under \approx , every state p of M' has at least on state q of N' with p \approx q and every state q of N' has exactly one state p of M' with p \approx q.
- O/w p \approx q \approx ⁻¹ p' \neq p => $\approx \approx$ ⁻¹ is a non-identity autobisimulation on M, a contradiciton!.
- Hence \approx is 1-1. Similarly, \approx^{-1} is 1-1 => \approx is 1-1 and onto and hence is an isomorphism b/t M' and N'. Q.E.D.

ALGORITHM FOR COMPUTING MAXIMAL BISIMULATION

- a generalization of that of Lec 14 for finding equivalent states of DFAs
- The algorithm: Find maximal bisimulation of two NFAs M and N
 - I. write down a table of all pairs (p,q) of states, initially
 - unmarked

- **2.** mark (p,q) if $p \in F_M$ and $q \notin F_N$ or vice versa.
- 3. repeat until no more change occur: if (p,q) is unmarked and if for some a ∈ Σ, either
 ∃p' ∈ δ_M(p,a) s.t. ∀ q' ∈ δ_N(q,a), (p',q') is marked, or
 ∃q' ∈ δ_N(q,a) s.t. ∀ p' ∈ δ_M(p,a), (p',q') is marked, then mark (p,q).
- 4. define $p \equiv q$ iff (p,q) are never marked.
- 5. If $S_M \equiv S_N \Rightarrow =$ is the maximal bisimulation
 - o/w M and N has no bisimulation.