COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

Applications of Pumping Lemma Closure Property

Observation:

•Every language of finite size has to be regular

(we can easily construct an NFA that accepts every string in the language)

Therefore, every non-regular language has to be of infinite size (contains an infinite number of strings) Suppose you want to prove that An infinite language L is not regular

1. Assume the opposite: L is regular

2. The pumping lemma should hold for

Ι,

3. Use the pumping lemma to obtain a contradiction

4. Therefore, L is not regular

Explanation of Step 3: How to get a contradiction

- 1. Let m be the critical length for L
- 2. Choose a particular string $w \in L$ which satisfies the length condition $|w| \ge m$

3. Write
$$w = xyz$$

4. Show that $w' = xy^i z \notin L$ for some $i \neq 1$

5. This gives a contradiction, since from pumping lemma $w' = xy^i z \in L$

Note:

It suffices to show that only one string $W \in L$ gives a contradiction

You don't need to obtain contradiction for every $w \in L$

Example of Pumping Lemma application

Theorem: The language $L = \{a^n b^n : n \ge 0\}$ is not regular

Proof: Use the Pumping Lemma

 $L = \{a^n b^n : n \ge 0\}$

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$L = \{a^n b^n : n \ge 0\}$

Let m be the critical length for L

Pick a string w such that: $w \in L$ and length $|w| \ge m$

We pick
$$w = a^m b^m$$

From the Pumping Lemma:

we can write
$$w = a^{m}b^{m} = x y z$$

with lengths $|x y| \le m$, $|y| \ge 1$
 $w = xyz = a^{m}b^{m} = a...aa...aa...ab...b$
 $x y z$
Thus: $y = a^{k}$, $1 \le k \le m$

 $a^{m+k}b^m \in L$

 $k \geq 1$

BUT: $L = \{a^n b^n : n \ge 0\}$ $a^{m+k}b^m \notin L$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

END OF PROOF

USING CLOSURE PROPERTY

- Let ∇ be a binary operation on languages and the class of regular languages is closed under ∇ . (∇ can be \cup , \cap , or -)
- If L₁ and L₂ are regular, then L₁∇L₂ is regular.
- If $L_1 \nabla L_2$ is not regular, then L_1 or L_2 are not regular.
- If $L_1 \nabla L_2$ is not regular but L_2 is regular, then L_1 is not regular.

PROVE THAT {We{0,1}* | THE NUMBER OF 0'S AND 1'S IN W ARE EQUAL} IS NOT REGULAR

- Let L={w \in {0,1}^{*}| the number of 0's and 1's in w are equal}.
- Let $R = \{0^i 1^i | i \ge 0\}$.
- $\mathsf{R} = \mathsf{0}^*\mathsf{1}^* \cap \mathsf{L}$
- We already prove that R is not regular.
- But 0*1* is regular.
- Then, L is not regular.

USING CLOSURE PROPERTY

Let ∇ be a unary operation on a language and the class of regular languages is closed under ∇ .

- (∇ can be complement or *)
- \odot If L is regular, then ∇ L is regular.
- \odot If ∇L is not regular, then L is not regular.

I HE NUMBER OF U'S AND I'S IN W ARE NOT EQUAL} IS NOT REGULAR

- Let L = { $w \in \{0,1\}^*$ | the number of 0's and 1's in w are not equal}.
- Let R = \overline{L} = {w \in {0,1}^{*} | the number of 0's and 1's in w are equal}.
- We already prove that R is not regular.
- Then, L is not regular.