


 Patterns and their defined languages 

 Regular Expressions  

 Finite Automata 

 



  S: a finite alphabet 

 A pattern is a string of symbols representing a set of strings in S*. 

 The set of all patterns is defined inductively as follows: 

1. atomic patterns: 

    a  S, e, , #, @. 

2. compound patterns:   if a and b are patterns, then so are: a + b, a  b , 
a*, a+, ~ a  and ab . 

 For each pattern a, L(a) is the language represented by a and is 
defined inductively as follows: 

1. L(a) = {a}, L(e) = {e }, L()= {}, L(#) = S, L(@) = S *. 

2. If L(a) and L(b) have been defined, then 

    L(a + b ) = L(a ) U L(b ),     L(a  b ) = L(a )  L(b ). 

    L(a+) = L(a )+, L(a*) = L(a)*, 

    L(~ a ) = S* - L(a ), L(a  b) = L(a )  L(b ). 

       



 We say that a string x matches a pattern a iff x  

L(a). 

 Some examples: 

1. S* = L(@) = L(#*) 

2. L(x) = {x} for any x  S* 

3. for any x1,…,xn in S*, L(x1+x2+…+xn) = {x1,x2,…,xn}. 

4. {x | x contains at least 3 a’s} = L(@a@a@a@} 

5. S - {a} = #  ~a 

6. {x | x does not contain a} = (#  ~a)* 

7. {x | every ‘a’ in x is followed sometime later by a ‘b’ } = 

    = {x | either no ‘a’ in x or $ ‘b’ in x followed no ‘a’ } 

    = (#  ~a)* + @b(#  ~a)*     

 

 



 Some interesting and important questions: 

1. How hard is it to determine if a given input string x 
matches a given pattern a ? 

    ==> efficient algorithm exists 

2. Can every set be represented by a pattern ? 

    ==> no! the set {anbn | n > 0 } cannot be represented by 
any pattern. 

3. How to determine if two given patterns a and b are 
equivalent ? (I.e., L(a) = L(b)) --- an exercise ! 

4. Which operations are redundant ? 
 e = ~(#+ @) =  *  ;    a+ = a  a*     

  # = a1 + a2 +…+ an if S = {a1,.., an} 

 a + b = ~(~a   ~b)  ; a   b  = ~ (~a  + ~b ) 

 It can be shown that ~ is redundant. 



 Recall that regular expressions are those patterns that can 
be built from: a S, e, , +,   and *. 

 Notational conventions: 

 a + br means a + (br) 

 a + b* means  a  + (b*) 

 a b* means  a (b*) 

Theorem 8: Let A  S*. Then the followings are equivalent: 

 1. A is regular (I.e., A = L(M) for some FA M ), 

 2. A = L(a) for some pattern a, 

 3. A = L(b) for some regular expression b. 

pf: Trivial part: (3) => (2). 

      (2) => (1)  to be proved now! 

       (1)=> (3) later. 



Pf: By induction on the structure of pattern a. 

 Basis: a is atomic: (by construction!) 

 
1. a = a :  

 

2. a  = e: 

 

3. a  =  : 

 

4.  a  =  #: 

 

5.  a  = @ = #* : 

a 

e 

e 

a,b,c,… 

a,b,c,… 



Inductive cases: Let M1 and M2 be any FAs 
accepting L(b) and L(g), respectively. 

 
6. a  = b g : =>  L(a) = L(M1  M2) 

 

7. a  = b * : =>  L(a) = L(M1*) 

 

8. a  = b  + g, a  = ~b or a = b  g : By ind. hyp. b and g 
are regular. Hence by closure properties of regular 
languages, a is regular, too. 

 

9. a  = b+ = b b* : Similar to case 8. 

 



1. (aaa)* + (aaaaa)* 

 

 

 

 



M = (Q, S, d, S, F) : a NFA; X Q: a set of states;  m,n Q : two states 

 

 pX(m,n) =def {y  S* | $ a path from m to n labeled y and all 
intermediate states  X }.        

 Note: L(M) = ?  

 pX(m,n) can be shown to be representable by a regular expr, by 
induction as follows:  

 Let D(m,n) = { a | (m –an)   d } = {a1,…,ak} ( k 0)  

     = the set of symbols by which we can reach from m to n, then 

Basic case: X =  : 

 1.1 if m  n: p(m,n) = {a1, a2,…,ak } = L(a1 + a2+…+ ak) if k > 0, 

                                 = {}                   = L()                     if k = 0. 

 1.2 if m =n: p(m,n) = {a1, a2,… ak, e}=L(a1 + a2+…+ ak +e) if k > 0, 

                                = {e}                    = L(e)                          if k = 0.  



3. For nonempty X, let q be any state in X, then : 
  pX(m,n)  =  pX-{q} (m,n)  U pX-{q}(m,q)  (pX-{q}(q,q))* pX-{q}(q,n). 
 
 By Ind.hyp.(why?), there are regular expressions a, b, g, r  with 
 L( [a, b, g, r] ) = [pX-{q} (m,n), pX-{q}(m,q), (pX-{q}(q,q)), pX-{q}(q,n) ]   
 
Hence pX(m,n) =     L( a )      U L(b)           L(g)            * L(r ),  
                        = L(a + bg*r ) 
              and can be represented as a reg. expr.   
 
 Finally, L(M) = {x | s --x--> f, s  S, f  F } 

 = SsS, fF p
Q(s,f),  is representable by a regular expression.   

 

 
  

 



Example : M :  

  L(M) = p{p,q,r}(p,p)  =  p{p,r}(p,p) +  p{p,r}(p,q) 

(p{p,r}(q,q))* p{p,r}(q,p) 

 p{p,r}(p,p)  = ? 

  p{p,r}(p,q)  = ? 

  p{p,r}(q,q)  = ? 

  p{p,r}(q,p)  = ?  

 

 

 

 0 1

>pF {p} {q}

 q {r} {}

 r {p} {q}

 

  

 

 

Hence L(M) = ? 
 

 

  



 The previous method  

 easy to prove, 

 easy for computer implementation, but 

 hard for human computation. 

 

 The strategy of the new method: 

 reduce the number of states in the target FA and  

 encodes path information by regular expressions on 

the edges. 

 until there is one or two states : one is the start state 

and one is the final state. 



0. Assume the machine M has only one start state and one 
final state. Both may probably be identical. 

1. While the exists a third state p that is neither start nor 
final: 
1.1 (Merge edges) For each pair of states (q,r) that has more than 

1 edges with labels t1,t2,…tn, respectively, than merge these 
edges by a new one with regular expression t = t1 + t2 … + tn. 

1.2 (Replace state p by edges; remove state) 

Let (p1, a1, p),… (pn, an, p) where pj != p be the collection of all 
edges in M with p as the destination state, and 

      (p,b1, q1),…,(p, bm, qm) where qj != p be the collection of all 
edges with p as the start state. Now the sate p together with 
all its connecting edges can be removed and replaced by a set 
of m x n  new edges : 

    { (pi, ai t* bj, qj) | i in [1,n] and j in [1,m] }. 

   The new machine is equivalent to the old one. 



Merge Edges : 
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•Replace state by Edges 

Note: {p1,p2,p3} may intersect with {q1,q2}. 



 2.  perform 1.1 once again (merge edges) 
 // There are one or two states now 
 3  Two cases to consider: 
 3.1 The final machine has only one state, that is both start 
           and final.  Then if  there is an edge labeled t  on the sate, 
           then t* is the result, other the result is e.  
 
    3.2 The machine has one start state s and one final state f.  
     Let (s, ss, s), (f, ff, f), (s,sf, f) and (f, ff, f) be the 

collection  of   all edges in the machine, where (sf) means the 
regular expression or label on the edge from s to f. 

     The result then is 
 
        [ (ss) + (sf ) (ff)* (fs) ] * (sf) (ff)* 
    



p q r 

p 0 1 0,1 

q 1 1 0,1 

r 0 0,1 1 

  0 1 

>p {p,r} {q,r} 

 q {r} {p,q,r} 

 rF {p,q} {q,r} 
 

 

1. another representation 



p q r 

p 0 1 0,1 

q 1 1 0,1 

r 0 0,1 1 

p q r 

p 0 1 0+1 

q 1 1 0+1 

r 0 0+1 1 

Merge edges 



p q r 

p 0 1 0+1 

q 1 1 0+1 

r 0 0+1 1 

remove q 

p q r 

p 0, 
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q  1 1, 

 

0+1 

r 0, 
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1 
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1 



p r 

>p 0+11*1 0+1+11* (0+1) 

rF 0+ (0+1) 1*1 1+ (0+1)1*(0+1) 

Final result : = [ pp + (pr) (rr)* (rp) ]*   (pr) (rr) * 

 

[ (0+11*1) +(0+1+11*(0+1)) (1+(0+1)1*(0+1))* (0+(0+1)1*1) ]* 

(0+1+11*(0+1)) (1+(0+1)1*(0+1))* 

Form the final result 


