COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Patterns and their defined languages
- Regular Expressions
- Finite Automata

PATTERNS AND THEIR DEFINED LANGUAGES

- Σ : a finite alphabet
- A pattern is a string of symbols representing a set of strings in Σ^* .
- The set of all patterns is defined inductively as follows:

1. atomic patterns:

 $a \in \Sigma, \epsilon, \varnothing, \#, @.$

- 2. compound patterns: if α and β are patterns, then so are: $\alpha + \beta$, $\alpha \cap \beta$, α^* , α^+ , $\sim \alpha$ and $\alpha \cdot \beta$.
- For each pattern α , L(α) is the language represented by α and is defined inductively as follows:

1. L(a) = {a}, L(
$$\varepsilon$$
) = { ε }, L(\emptyset)= {}, L($\#$) = Σ , L(\circledast) = Σ *.

2. If $L(\alpha)$ and $L(\beta)$ have been defined, then

$$L(\alpha + \beta) = L(\alpha) \cup L(\beta), \quad L(\alpha \cap \beta) = L(\alpha) \cap L(\beta).$$

$$L(\alpha^{+}) = L(\alpha)^{+}, \quad L(\alpha^{*}) = L(\alpha)^{*},$$

$$L(-\alpha) = \Sigma^{*} - L(\alpha), \quad L(\alpha \cdot \beta) = L(\alpha) \cdot L(\beta).$$

MORE ON PATTERNS

- We say that a string x matches a pattern α iff $x \in L(\alpha)$.
- Some examples:
 - $1. \Sigma^* = L(@) = L(#^*)$
 - 2. L(x) = {x} for any $x \in \Sigma^*$
 - 3. for any $x_1,...,x_n$ in Σ^* , $L(x_1+x_2+...+x_n) = \{x_1,x_2,...,x_n\}$.
 - 4. {x | x contains at least 3 a's} = L(@a@a@a@}
 - 5. Σ {a} = # \cap ~a
 - 6. {x | x does not contain a} = $(\# \cap \neg a)^*$
 - 7. {x | every 'a' in x is followed sometime later by a 'b' } =
 - = $\{x \mid \text{either no 'a' in } x \text{ or } \exists \text{ 'b' in } x \text{ followed no 'a' } \}$

MORE ON PATTERN MATCHING

- Some interesting and important questions:
- How hard is it to determine if a given input string x matches a given pattern a ?
 ==> efficient algorithm exists
- 2. Can every set be represented by a pattern ?
 => no! the set {aⁿbⁿ | n > 0 } cannot be represented by any pattern.
- 3. How to determine if two given patterns α and β are equivalent? (I.e., L(α) = L(β)) --- an exercise !
- 4. Which operations are redundant?

○
$$\varepsilon = \sim (\#^+ \cap @) = \emptyset^*$$
; $\alpha^+ = \alpha \cdot \alpha^*$
○ $\# = a_1 + a_2 + ... + a_n$ if $\Sigma = \{a_1, ..., a_n\}$
○ $\alpha + \beta = \sim (\sim \alpha ~ \cap \sim \beta)$; $\alpha ~ \cap \beta = \sim (\sim \alpha + \sim \beta)$
○ It can be shown that ~ is redundant.

EQUIVALENCE OF PATTERNS, REGULAR EXPR. & FAS

- Recall that regular expressions are those patterns that can be built from: a $\in \Sigma$, ε , \emptyset , +, \cdot and *.
- Notational conventions:
 - $\circ \alpha + \beta \rho$ means $\alpha + (\beta \rho)$
 - $\circ \alpha + \beta^*$ means $\alpha + (\beta^*)$
 - $\circ \alpha \beta^*$ means $\alpha (\beta^*)$

Theorem 8: Let $A \subseteq \Sigma^*$. Then the followings are equivalent:

- 1. A is regular (I.e., A = L(M) for some FA M),
- 2. A = L(α) for some pattern α ,
- 3. A = L(β) for some regular expression β .
- pf: Trivial part: (3) => (2).
 - (2) => (1) to be proved now!
 (1)=> (3) later.

(2) => (1) : EVERY SET REPRESENTED BY A PATTERN IS REGULAR

Pf: By induction on the structure of pattern α . Basis: α is atomic: (by construction!)

Inductive cases: Let M_1 and M_2 be any FAs accepting L(β) and L(γ), respectively.

6.
$$\alpha = \beta \gamma : \Rightarrow L(\alpha) = L(M_1 \cdot M_2)$$

7.
$$\alpha = \beta^* : => L(\alpha) = L(M_1^*)$$

8. $\alpha = \beta + \gamma, \alpha = -\beta$ or $\alpha = \beta \cap \gamma$: By ind. hyp. β and γ are regular. Hence by closure properties of regular languages, α is regular, too.

9. $\alpha = \beta^+ = \beta \beta^*$: Similar to case 8.

SOME EXAMPLES PATTERNS & THEIR EQUIVALENT FAS

1. (aaa)* + (aaaaa)*

(1)=>(3): REGULAR LANGUAGES CAN BE REPRESENTED BY REG. EXPR.

 $M = (Q, \Sigma, \delta, S, F) : a NFA; X \subseteq Q: a set of states; \mu, \nu \in Q : two states$

- π^X(μ,ν) =_{def} {y ∈ Σ* | ∃ a path from μ to ν labeled y and all intermediate states ∈ X }.
 Note: L(M) = ?
- $\pi^{X}(\mu,\nu)$ can be shown to be representable by a regular expr, by induction as follows:

Let $D(\mu,\nu) = \{a \mid (\mu - a \rightarrow \nu) \in \delta \} = \{a_1,...,a_k\} (k \ge 0)$

= the set of symbols by which we can reach from μ to ν , then Basic case: X = \emptyset :

1.1 if
$$\mu \neq \nu$$
: $\pi^{\emptyset}(\mu,\nu) = \{a_1, a_2,...,a_k\} = L(a_1 + a_2 + ... + a_k)$ if $k > 0$,

$$= \{\} = L(\emptyset) \qquad \text{if } k = 0.$$
1.2 if $\mu = \nu$: $\pi^{\emptyset}(\mu,\nu) = \{a_1, a_2,..., a_k, \epsilon\} = L(a_1 + a_2 + ... + a_k + \epsilon)$ if $k > 0$,

$$= \{\epsilon\} = L(\epsilon) \qquad \text{if } k = 0.$$

3. For nonempty X, let q be any state in X, then : $\pi^{X}(\mu,\nu) = \pi^{X-\{q\}}(\mu,\nu) \ U \ \pi^{X-\{q\}}(\mu,q) \ (\pi^{X-\{q\}}(q,q))^* \ \pi^{X-\{q\}}(q,\nu).$

By Ind.hyp.(why?), there are regular expressions α , β , γ , ρ with L([α , β , γ , ρ]) = [$\pi^{X-\{q\}}(\mu,\nu)$, $\pi^{X-\{q\}}(\mu,q)$, ($\pi^{X-\{q\}}(q,q)$), $\pi^{X-\{q\}}(q,\nu)$]

Hence
$$\pi^{X}(\mu,\nu) = L(\alpha) UL(\beta) L(\gamma) * L(\rho),$$

= $L(\alpha + \beta\gamma^{*}\rho)$
and can be represented as a reg. expr.

• Finally, L(M) = {x | s --x--> f, s \in S, f \in F } = $\sum_{s \in S, f \in F} \pi^Q(s, f)$, is representable by a regular expression.

SOME EXAMPLES

Example : M :

- $L(M) = p^{\{p,q,r\}}(p,p) = p^{\{p,r\}}(p,p) + p^{\{p,r\}}(p,q)$ $(P^{\{p,r\}}(q,q))* P^{\{p,r\}}(q,p)$
- $\mathbf{p}^{\{p,r\}}(p,p) = ?$
- $\mathbf{p}^{\{p,r\}}(p,q) = ?$

Hence L(M) = ?

	0	1
>pF	{p}	{q}
q	{r}	{}
r	{p}	{q}

• $\mathbf{p}^{\{p,r\}}(q,q) = ?$ • $\mathbf{p}^{\{p,r\}}(q,p) = ?$

ANOTHER APPROACH

• The previous method

- easy to prove,
- easy for computer implementation, but
- hard for human computation.

• The strategy of the new method:

- reduce the number of states in the target FA and
- encodes path information by regular expressions on the edges.
- until there is one or two states : one is the start state and one is the final state.

- 0. Assume the machine M has only one start state and one start state. Both may probably be identical.
- 1. While the exists a third state p that is neither start nor final:
 - 1.1 (Merge edges) For each pair of states (q,r) that has more than 1 edges with labels $t_1, t_2, ..., t_n$, respectively, than merge these edges by a new one with regular expression $t = t_1 + t_2 ... + t_n$.
 - 1.2 (Replace state p by edges; remove state)
 - Let $(p_1, \alpha_1, p), \dots, (p_n, \alpha_n, p)$ where $p_j != p$ be the collection of all edges in M with p as the destination state, and

 $(p,\beta_1, q_1),...,(p, \beta_m, q_m)$ where qj != p be the collection of all edges with p as the start state. Now the sate p together with all its connecting edges can be removed and replaced by a set of m x n new edges :

{ $(p_i, \alpha_i t^* \beta_j, q_j) | i in [1,n] and j in [1,m] }.$

The new machine is equivalent to the old one.

Merge Edges :

 $\underline{\alpha+\beta+\gamma}$

•Replace state by Edges

Note: {p1,p2,p3} may intersect with {q1,q2}.

- 2. perform 1.1 once again (merge edges)
- // There are one or two states now
- 3 Two cases to consider:
 - 3.1 The final machine has only one state, that is both start and final. Then if there is an edge labeled t on the sate, then t* is the result, other the result is ε .

3.2 The machine has one start state s and one final state f. Let $(s, s \rightarrow s, s)$, $(f, f \rightarrow f, f)$, $(s, s \rightarrow f, f)$ and $(f, f \rightarrow f, f)$ be the collection of all edges in the machine, where $(s \rightarrow f)$ means the regular expression or label on the edge from s to f. The result then is

```
[(s \rightarrow s) + (s \rightarrow f) (f \rightarrow f)^* (f \rightarrow s)]^* (s \rightarrow f) (f \rightarrow f)^*
```

	0	1
>p	{p,r}	{q,r}
q	{r}	{p,q,r}
rF	{p,q}	{q,r}

EXAMPLE

1. another representation

	р	q	r
р	0	1	0,1
q	1	1	0,1
r	0	0,1	1

Merge edges

	р	q	r
р	0	1	0,1
q	1	1	0,1
r	0	0,1	1

	р	q	r
р	0	1	0+1
q	1	1	0+1
r	0	0+1	1

		р	q	r
	р	0	1	0+1
r	q	1	1	0+1
0+1,	r	0	0+1	1
* (0+1)				
0+1	n <u>1</u>			1 → n
	ρ r —		q _	0+1
1, \1*(0 ⊥ 1)	0+1		· ·	r
י (די)			J	

Form the final result

	р	r
>p	0+11*1	0+1+11* (0+1)
rF	0+ (0+1) 1*1	1+ (0+1)1*(0+1)

Final result : = $[p \rightarrow p + (p \rightarrow r) (r \rightarrow r)^* (r \rightarrow p)]^* (p \rightarrow r) (r \rightarrow r)^*$

[(0+11*1) + (0+1+11*(0+1)) (1+(0+1)1*(0+1))* (0+(0+1)1*1)]* (0+1+11*(0+1)) (1+(0+1)1*(0+1))*