COURSE: THEORY OF AUTOMATA COMPUTATION

IOPICS TO BE COVERED

- Patterns and their defined languages
- Regular Expressions
- Finite Automata

PATTERNS AND THEIR DEFINED LANGUAGES

- Σ : a finite alphabet
- A pattern is a string of symbols representing a set of strings in Σ^{*}.
- The set of all patterns is defined inductively as follows:

1. atomic patterns:
$a \in \Sigma, \varepsilon, \varnothing, \#, @$.
2. compound patterns: if α and β are patterns, then so are: $\alpha+\beta, \alpha \cap \beta$, $\alpha^{*}, \alpha^{+}, \sim \alpha$ and $\alpha \cdot \beta$.

- For each pattern $\alpha, L(\alpha)$ is the language represented by α and is defined inductively as follows:

1. $L(a)=\{a\}, L(\varepsilon)=\{\varepsilon\}, L(\varnothing)=\{ \}, L(\#)=\Sigma, L(@)=\Sigma$ *.
2. If $L(\alpha)$ and $L(\beta)$ have been defined, then

$$
\begin{aligned}
& L(\alpha+\beta)=L(\alpha) U L(\beta), \quad L(\alpha \cap \beta)=L(\alpha) \cap L(\beta) . \\
& L\left(\alpha^{+}\right)=L(\alpha)^{+}, L\left(\alpha^{*}\right)=L(\alpha)^{*}, \\
& L(\sim \alpha)=\Sigma^{*}-L(\alpha), L(\alpha \cdot \beta)=L(\alpha) \cdot L(\beta) .
\end{aligned}
$$

MORE ON PATTERNS

- We say that a string x matches a pattern α iff $x \in$ L(α).
- Some examples:

1. $\Sigma^{*}=\mathrm{L}(@)=\mathrm{L}\left(\#^{*}\right)$
2. $L(x)=\{x\}$ for any $x \in \Sigma^{*}$
3. for any x_{1}, \ldots, x_{n} in $\Sigma^{*}, L\left(x_{1}+x_{2}+\ldots+x_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
4. $\{x \mid x$ contains at least $3 a$'s $\}=L(@ a @ a @ a @\}$
5. $\Sigma-\{a\}=\# \cap \sim a$
6. $\{x \mid x$ does not contain $a\}=(\# \cap \sim a)^{*}$
7. $\{x \mid$ every ' a ' in x is followed sometime later by a 'b' $\}=$ $=\{x \mid$ either no ' a ' in x or \exists ' b ' in x followed no ' a ' $\}$ $=(\# \cap \sim \mathrm{a})^{*}+@ b(\# \cap \sim \mathrm{a})^{*}$

MORE ON PATTERN MATCHING

- Some interesting and important questions:

1. How hard is it to determine if a given input string x matches a given pattern a ?
==> efficient algorithm exists
2. Can every set be represented by a pattern ?
$==>$ no! the set $\left\{a^{n} b^{n} \mid n>0\right\}$ cannot be represented by any pattern.
3. How to determine if two given patterns α and β are equivalent ? (I.e., $L(\alpha)=L(\beta))$--- an exercise !
4. Which operations are redundant ?
$\bigcirc \varepsilon=\sim\left(\#^{+} \cap @\right)=\varnothing^{*} ; \quad \alpha^{+}=\alpha \cdot \alpha^{*}$

- $\#=a_{1}+a_{2}+\ldots+a_{n}$ if $\Sigma=\left\{a_{1}, . ., a_{n}\right\}$
$\bigcirc \alpha+\beta=\sim(\sim \alpha \cap \sim \beta) ; \alpha \cap \beta=\sim(\sim \alpha+\sim \beta)$
\circ It can be shown that \sim is redundant.

EQUIVALENCE OF PATTERNS, REGULAR EXPR. \& FAS

- Recall that regular expressions are those patterns that can be built from: $\mathrm{a} \in \Sigma, \varepsilon, \varnothing,+$, and *.
- Notational conventions:
$\bigcirc \alpha+\beta \rho$ means $\alpha+(\beta \rho)$
$\alpha+\beta^{*}$ means $\alpha+\left(\beta^{*}\right)$
○ $\alpha \beta^{*}$ means $\alpha\left(\beta^{*}\right)$
Theorem 8: Let $A \subseteq \Sigma^{*}$. Then the followings are equivalent:

1. A is regular (I.e., $A=L(M)$ for some FA M),
2. $A=L(\alpha)$ for some pattern α,
3. $A=L(\beta)$ for some regular expression β.
pf: Trivial part: (3) => (2).
(2) => (1) to be proved now!
(1)=> (3) later.

(2) => (1) : EVERY SET REPRESENTED BY A PATTERN IS REGULAR

Pf: By induction on the structure of pattern α. Basis: α is atomic: (by construction!)

1. $\alpha=\mathrm{a}:$
2. $\alpha=\varepsilon$:
3. $\alpha=\varnothing$:
4. $\alpha=\#$:
5. $\alpha=$ @ = \#*

0 a, b, c, \ldots

Inductive cases: Let M_{1} and M_{2} be any FAs accepting $L(\beta)$ and $L(\gamma)$, respectively.
6. $\alpha=\beta \gamma:=>L(\alpha)=L\left(M_{1} \cdot M_{2}\right)$
7. $\alpha=\beta^{*}:=>L(\alpha)=L\left(M_{1}{ }^{*}\right)$
8. $\alpha=\beta+\gamma, \alpha=\sim \beta$ or $\alpha=\beta \cap \gamma$: By ind. hyp. β and γ are regular. Hence by closure properties of regular languages, α is regular, too.
9. $\alpha=\beta^{+}=\beta \beta^{*}$: Similar to case 8.

SOME EXAMPLES PATTERNS \& THEIR EQUIVALENT FAS

1. $(\mathrm{aaa})^{*}+(\mathrm{aaaaa})^{*}$
$M=(\mathrm{Q}, \Sigma, \delta, \mathrm{S}, \mathrm{F}):$ a $\mathrm{NFA} ; \mathrm{X} \subseteq \mathrm{Q}:$ a set of states; $\mu, v \in \mathrm{Q}:$ two states

- $\pi^{X}(\mu, v)=_{\text {def }}\left\{y \in \Sigma^{*} \mid \exists\right.$ a path from μ to v labeled y and all intermediate states $\in X\}$.
- Note: L(M) = ?
- $\pi^{\mathrm{X}}(\mu, v)$ can be shown to be representable by a regular expr, by induction as follows:
Let $D(\mu, v)=\{a \mid(\mu-a \rightarrow v) \in \delta\}=\left\{a_{1}, \ldots, a_{k}\right\}(k \geq 0)$
$=$ the set of symbols by which we can reach from μ to v, then Basic case: $\mathrm{X}=\varnothing$:
1.1 if $\mu \neq v: \pi^{\varnothing}(\mu, v)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}=L\left(a_{1}+a_{2}+\ldots+a_{k}\right)$ if $k>0$,

$$
=\{ \} \quad=L(\varnothing) \quad \text { if } k=0 \text {. }
$$

1.2 if $\mu=v: \pi^{\varnothing}(\mu, v)=\left\{a_{1}, a_{2}, \ldots a_{k}, \varepsilon\right\}=L\left(a_{1}+a_{2}+\ldots+a_{k}+\varepsilon\right)$ if $k>0$, $=\{\varepsilon\}$
$=\mathrm{L}(\varepsilon)$
if $\mathrm{k}=0$.
3. For nonempty X, let q be any state in X, then :
$\pi^{x}(\mu, v)=\pi^{x-\{q\}}(\mu, v) \cup \pi^{x-\{q\}}(\mu, q) \quad\left(\pi^{x-\{q\}}(q, q)\right)^{*} \pi^{x-\{q\}}(q, v)$.
By Ind.hyp.(why?), there are regular expressions $\alpha, \beta, \gamma, \rho$ with $\mathrm{L}([\alpha, \beta, \gamma, \rho])=\left[\pi^{x-\{q\}}(\mu, v), \pi^{x-\{q\}}(\mu, q),\left(\pi^{x-\{q\}}(q, q)\right), \pi^{x-\{q\}}(q, v)\right]$

Hence $\begin{aligned} \pi^{\mathrm{x}}(\mu, v) & =\mathrm{L}(\alpha) \quad \mathrm{U}(\beta) \quad \mathrm{L}(\gamma) \quad * \mathrm{~L}(\rho), \\ & \mathrm{L}\left(\alpha+\beta \gamma^{*} \rho\right)\end{aligned}$ and can be represented as a reg. expr.

- Finally, $L(M)=\{x \mid s--x-->f, s \in S, f \in F\}$
$=\Sigma_{\mathrm{s} \in \mathrm{S}, \mathrm{f} \mathrm{\in F}} \pi^{Q}(\mathrm{~s}, \mathrm{f})$, is representable by a regular expression.

SOME EXAMPLES

Example: M :

- $L(M)=p^{\{p, q, r\}}(p, p)=p^{\{p, r\}}(p, p)+p^{\{p, r\}}(p, q)$ $\left(p^{\langle p, r\}}(q, q)\right)^{*} p^{\{p, r\}}(q, p)$
$\odot p^{\{p, r\}}(\mathrm{p}, \mathrm{p})=$?
$\odot \mathrm{p}^{\{\mathrm{p}, \mathrm{r}\}}(\mathrm{p}, \mathrm{q})=$?
- $\mathrm{p}^{\{\mathrm{p}, \mathrm{r}\}}(\mathrm{q}, \mathrm{q})=$?
$\odot \mathrm{p}^{\{\mathrm{p}, \mathrm{r}\}}(\mathrm{q}, \mathrm{p})=$?

	0	1
$>$ pF	$\{p\}$	$\{q\}$
\mathbf{q}	$\{r\}$	$\}$
r	$\{p\}$	$\{q\}$

ANOTHER APPROACH

- The previous method
- easy to prove,
- easy for computer implementation, but
- hard for human computation.
- The strategy of the new method:
- reduce the number of states in the target FA and
- encodes path information by regular expressions on the edges.
- until there is one or two states : one is the start state and one is the final state.

0 . Assume the machine M has only one start state and one stifinal state. Both may probably be identical.

1. While the exists a third state p that is neither start nor final:
1.1 (Merge edges) For each pair of states (q, r) that has more than 1 edges with labels $\mathrm{t}_{1}, \mathrm{t}_{2}, . . \mathrm{t}_{\mathrm{n}}$, respectively, than merge these edges by a new one with regular expression $t=t_{1}+t_{2} \ldots+t_{n}$. 1.2 (Replace state p by edges; remove state)

Let $\left(p_{1}, \alpha_{1}, p\right), \ldots\left(p_{n}, \alpha_{n}, p\right)$ where $p_{j}!=p$ be the collection of all edges in M with p as the destination state, and
$\left(p, \beta_{1}, q_{1}\right), \ldots,\left(p, \beta_{m}, q_{m}\right)$ where $q j!=p$ be the collection of all edges with p as the start state. Now the sate p together with all its connecting edges can be removed and replaced by a set of $m \times n$ new edges:
$\left\{\left(\mathrm{p}_{\mathrm{i}}, \alpha_{\mathrm{i}} \mathrm{t}^{*} \beta_{\mathrm{j}}, \mathrm{q}_{\mathrm{j}}\right) \mid \mathrm{i}\right.$ in $[1, \mathrm{n}]$ and j in $\left.[1, \mathrm{~m}]\right\}$.
The new machine is equivalent to the old one.
\bigcirc Merge Edges :

- Replace state by Edges

Note: $\{p 1, \mathrm{p} 2, \mathrm{p} 3\}$ may intersect with $\{\mathrm{q} 1, \mathrm{q} 2\}$.
2. perform 1.1 once again (merge edges)
// There are one or two states now
3 Two cases to consider:
3.1 The final machine has only one state, that is both start and final. Then if there is an edge labeled t on the sate, then t^{*} is the result, other the result is ε.
3.2 The machine has one start state s and one final state f. Let $(\mathrm{s}, \mathrm{s} \rightarrow \mathrm{s}, \mathrm{s})$, ($\mathrm{f}, \mathrm{f} \rightarrow \mathrm{f}, \mathrm{f}$), ($\mathrm{s}, \mathrm{s} \rightarrow \mathrm{f}, \mathrm{f}$) and ($\mathrm{f}, \mathrm{f} \rightarrow \mathrm{f}, \mathrm{f}$) be the collection of all edges in the machine, where ($s \rightarrow f$) means the regular expression or label on the edge from s to f.
The result then is
$\left[(\mathrm{s} \rightarrow \mathrm{s})+(\mathrm{s} \rightarrow \mathrm{f})(\mathrm{f} \rightarrow \mathrm{f})^{*}(\mathrm{f} \rightarrow \mathrm{s})\right]^{*}(\mathrm{~s} \rightarrow \mathrm{f})(\mathrm{f} \rightarrow \mathrm{f})^{*}$

	0	1
$>p$	$\{p, r\}$	$\{q, r\}$
q	$\{r\}$	$\{p, q, r\}$
$r F$	$\{p, q\}$	$\{q, r\}$

1. another representation

	p	q	r
p	0	1	0,1
q	1	1	0,1
r	0	0,1	1

Merge edges

	\mathbf{p}	\mathbf{q}	\mathbf{r}
\mathbf{p}	$\mathbf{0}$	$\mathbf{1}$	0,1
\mathbf{q}	$\mathbf{1}$	$\mathbf{1}$	0,1
\mathbf{r}	$\mathbf{0}$	0,1	$\mathbf{1}$

	\mathbf{p}	\mathbf{q}	\mathbf{r}
\mathbf{p}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0 + 1}$
\mathbf{q}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0 + 1}$
\mathbf{r}	$\mathbf{0}$	$0+\mathbf{1}$	$\mathbf{1}$

remove q

	p	9	r
p	$\begin{gathered} 0, \\ 11{ }^{*} 1 \end{gathered}$	1	$\begin{gathered} 0+1, \\ 11^{*}(0+1) \end{gathered}$
q	1	1,	0+1
r	$\begin{gathered} 0, \\ (0+1) \end{gathered}$	0+1	$\begin{gathered} 1, \\ (0+1) \cdot(0+1) \end{gathered}$

Form the final result

	\mathbf{p}	\mathbf{r}
\mathbf{p}	$\mathbf{0 + 1 1 ^ { * }}$	$\mathbf{0 + 1 + 1 1 ^ { * } (0 + 1)}$
$\mathbf{r F}$	$\mathbf{0 + (0 + 1)} 1^{* 1}$	$\mathbf{1 + (0 + 1) { } ^ { * } (0 + 1)}$

Final result : $=\left[p \rightarrow p+(p \rightarrow r)(r \rightarrow r)^{*}(r \rightarrow p)\right]^{*} \quad(p \rightarrow r)(r \rightarrow r)^{*}$
$\left[\left(0+11^{*} 1\right)+\left(0+1+11^{*}(0+1)\right)\left(1+(0+1) 1^{*}(0+1)\right)^{*}\left(0+(0+1) 1^{*} 1\right)\right]^{*}$ $\left(0+1+11^{*}(0+1)\right)\left(1+(0+1) 1^{*}(0+1)\right)^{*}$

