COURSE:
THEORY OF

AUTOMATA
COMPUTATION

TOPICS TO BE COVERED

@ Patterns and their defined languages
@ Regular Expressions
® Finite Automata

PATTERNS AND THEIR DEFINED LANGUAGES

> a finite alphabet
A pattern is a string of symbols representing a set of strings in X*.

The set of all patterns is defined inductively as follows:
1. atomic patterns:
acX g O, # @.
2. compound patterns: if o and 3 are patterns, thenso are: a + 3, an 3,
o*, a*, ~o and a-f .
For each pattern a, L(a) is the language represented by o and is
defined inductively as follows:
1. L(a) ={a}, L(e) = {e }, L(D)={}, L#) = &, L(@) =2 ™.
2. If L(a) and L(B) have been defined, then
Liao+B)=La)ULPB), Llanp)=Lla)~L{Pp).
L(a®) = L(a)%, L(a®) = L(a)*,
L(~a)=2%2"-L(a), L(a-B) =L(a) - LB).

MORE ON PATTERNS

« We say that a string x matches a pattern a iff x €
L(o).
« Some examples:
1.2* = L(@) = L(#%)
2. L(x) = {x} for any x € ¥*
3. for any Xq,...,X, in X%, L(X{+Xo+...#X,) = {X1,X9,00, X}
4. {x | x contains at least 3 a’s} = L(@a@a@a@}
5.2-{a}=#n ~a
6. {x | x does not contain a} = (#¥ N ~a)*
7. {x | every ‘@’ in x is followed sometime later by a ‘b’ } =
= {x | either no ‘a’ in x or 3 ‘b’ in x followed no ‘a’ }
= (# N ~a)* + @b(# N ~a)*

MORE ON PATTERN MATCHING

« Some interesting and important questions:

1. How hard is it to determine if a given input string x
matches a given pattern a?

==> efficient algorithm exists
2. Can every set be represented by a pattern ?

==> no! the set {a"b" | n > 0 } cannot be represented by
any pattern.

3. How to determine if two given patterns o and 3 are
equivalent ? (l.e., L(a) = L(B)) --- an exercise !
4. Which operations are redundant ?
e=~FnN@)=0* ; at=oa-a"
#=a,+a,+..+a,if Z={a,,.., a}
a+tf=~(~a Nn~-PB) ;0 NP =~(a+-p)
It can be shown that ~ is redundant.

EQUIVALENCE OF PATTERNS, REGULAR
EXPR. & FAS

« Recall that regular expressions are those patterns that can
be built from: a €%, ¢, J, +, - and *.

« Notational conventions:
o + Bp means a + (Bp)
o+ B* means a + (B¥)
o B* means o (B%)

Theorem 8: Let A < X*. Then the followings are equivalent:
1. Ais regular (l.e., A= L(M) for some FAM),
2. A=L(a) for some pattern a,

3. A=L(B) for some regular expression f3.

pf: Trivial part: (3) => (2).

(2) => (1) to be proved now!
(1)=> (3) later.

(2) => (1) : EVERY SET REPRESENTED BY A
PATTERN IS REGULAR

Pf: By induction on the structure of pattern a.
Basis: o is atomic: (by construction!)

a

a=a: H
g

Inductive cases: Let M\; and M, be any FAs
accepting L(B) and L(y), respectively.

6.a =By:=> L(a)=LM;-M)
7.0 =B *:=> L(a) = L(M;%)

.o =B +y,a0 =~Bora=pnNny:Byind. hyp. fandy
are regular. Hence by closure properties of regular
languages, o is regular, too.

9.0 =p* = p*: Similar to case 8.

SOME EXAMPLES PATTERNS & THEIR
EQUIVALENT FAS

1. (@aaa)* + (aaaaa)”

(1)=>(3): REGULAR LANGUAGES CAN BE
REPRESENTED BY REG. EXPR.

M=(Q, %, 5,5, F) : aNFA; Xc Q: a set of states; u,v €Q : two states

o T(1,V) =40¢ {y € Z* | 3 a path from p to v labeled y and all
intermediate states € X }.

Note: L(M) =7?

« 1X(u,v) can be shown to be representable by a regular expr, by
induction as follows:

Let D(n,v) ={a | (n-a=>v) €96 }=1{a,..,a,} (k= 0)
= the set of symbols by which we can reach from p to v, then
Basic case: X = J :
1.10f p = v: 2(wv) = {a;, a,,...,a, } = L(a; + a,+...+ a,) if k > 0,
= {} = L(J) if k=0.
1.2 if p=v: ©2(u,v) = {a,, a,,... 3, e}=L(a; + a,+...+ a, +¢) if k > 0,
= {e} = L(¢) if k=0.

3. For nonempty X, let g be any state in X, then :
nX(HaV) = nX-{q} (H,V) U ﬂ:x-{q}(uaq) (TCX'{Cl}(q,q))* 7-[:X-{q}(qav)'

By Ind.hyp.(why?), there are regular expressions a, 3, v, p with
L([o, B, 7, p]) = [719 (,v), m¥19(p,q), (7*19(q,q)), n*1%(q,v)]

Hence n*(p,v) = L(a) UL(P) L(v) “Lp),

=L(a+Byp)
and can be represented as a reg. expr.

« Finally, LIM)={x | s--x-->f,seS,feF}
= 2565’ «.r 7(s,f), is representable by a regular expression.

SOME EXAMPLES

Example : M :

® L(M) = ptai3(p,p) = ptPT(p,p) + ptP(p,q)
(P*3(0,0))* ptPr(a,p)

© ptPri(p,p) =7

® ptP}p,q) =? Hence L(M) =?

® plri(g,q) =7 0 1

© PPap) =7 >oF {p} {a}
q {r} {}
r {p} {a}

ANOTHER APPROACH

@ The previous method
easy to prove,
easy for computer implementation, but
hard for human computation.

® The strategy of the new method:
reduce the number of states in the target FA and
encodes path information by regular expressions on
the edges.

until there is one or two states : one is the start state
and one is the final state.

0. Assume the machine M has only one start state and one
stfinal state. Both may probably be identical.

1. While the exists a third state p that is neither start nor
final:

1.1 (Merge edges) For each pair of states (q,r) that has more than
1 edges with labels t,,t,,...t,, respectively, than merge these
edges by a new one with regular expressiont=t, +t, ... +t.

1.2 (Replace state p by edges; remove state)

Let (p,, Oy P),-.- (Pny &y, P) Where p; = p be the collection of all
edges in M w1th p as the destmatlon state, and

(p.By, 94),---, (P, Bm,) Where qj != p be the collection of all
edges with p as the start state. Now the sate p together with

all its connecting edges can be removed and replaced by a set
of m x n new edges :

{ (pi) o t* Bj) qJ) | iin [1)n] and J in [1)m] }
The new machine is equivalent to the old one.

® Merge Edges : ‘Replace state by Edges

a3 7B,

Note: {p1,p2,p3} may intersect with {q1,92}.

2. perform 1.1 once again (merge edges)
// There are one or two states now
3 Two cases to consider:
3.1 The final machine has only one state, that is both start
and final. Then if there is an edge labeled t on the sate,
then t* is the result, other the result is ¢.

3.2 The machine has one start state s and one final state f.

Let (s, s—=2s, s), 1f f>f, 1), (s,s=>f,) and (f, f=>f, f) be the
collection of al edges in the machine, where (s=>f) means the
regular expression or label on the edge from s to f.

The result then is

[(s25) + (s=2f) (f=>1)* (f=>s)] * (s=>f) (f=>1)"

EXAMPILE

1. another representation

0 1
>p {p,r} {a.r}
g {r} {p,q,r}
rF {p,a} [{aq.r}
g I
D o |1 |01
g (1 |1 |01
r 0 0,1 |1

Merge edges

q |r
0,1

1 (0,1

0,111

P19 T
0 0 0+1
g |1 |1 |0+1
r 0 |0+1]1

remove Q

P I
0, 0+1,
111 11 (0+1)
0, 1,
(0+1) "1 (0+1)"(0+1)

g |r
D 1 |0+1
g 0+1
r O+1]1
1 1
P
P q 0+1
F0+1 '

Form the final result

P I
>p 0+1 1 0+1+1 (0+1)

rF 0+ (0+1) 1 1+ (0+1) (0+1)

Final result: = [p—2>p + (p=21) (r=>0nN* (r->p) I* (p=2r) (r>r) *

[(O+11*1) +(0+1+11*(0+1)) (1+(0+1)1*(0+1))* (O+(0O+1)1*1) |*
(O+1+11%0+1)) (1+(0+1)1*(0+1))*

