COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Conversion of NFA to DFA
- Inaccessible states
- How to find all accessible states
- Minimization process

INTRODUCTION

MOTIVATIONS

Problems:

- 1. Given a DFA M with k states, is it possible to find an equivalent DFA M' (I.e., L(M) = L(M')) with state number fewer than k ?
- 2. Given a regular language A, how to find a machine with minimum number of states ?
- Ex: A = L((a+b)*aba(a+b)*) can be accepted by the following NFA:

By applying the subset construction, we can construct a DFA M2 with 2^4 =16 states,

a,b

a

of which only 6 are accessible from the initial state {s}.

A state p ∈ Q is said to be inaccessible (or unreachable) [from the initial state] if there exists no string x in Σ* s.t.
 Δ(s,x) = p (I.e., p ∉ {q | ∃x∈Σ*, Δ(s,x) = q }.)

Theorem: Removing inaccessible states from a machine M does not affect the language it accepts.

Pf: $M = \langle Q, \Sigma, \delta, s, F \rangle$: a DFA; p: an inaccessible state Let $M' = \langle Q \setminus \{p\}, \Sigma, \delta', s, F \setminus \{p\} \rangle$ be the DFA M with p removed. Where $\delta': (Q \setminus \{p\}) x\Sigma \rightarrow Q \setminus \{p\}$ is defined by $\delta'(q,a) = r$ if $\delta(q, a) = r$ and $q, r \in Q \setminus \{p\}$.

For M and M' it can be proved by induction on x that for all x in Σ^* , $\Delta(s,x) = \Delta'(s,x)$. Hence for all $x \in \Sigma^*$, $x \in L(M)$ iff $\Delta(s,x) = q \in F$ iff $\Delta'(s,x) = q \in F \setminus \{p\}$ iff $x \in L(M')$.

INACCESSIBLE STATES ARE REDUNDANT

M : any DFA with n inaccessible states p₁,p₂,...,p_n.
 Let M₁,M₂,...,M_{n+1} are DFAs s.t. DFA M_{i+1} is constructed from M_i by removing p_i from M_i. I.e.,
 M -rm(p₁)-> M₁ -rm(p₂)-> M₂ - ... M_n -rm(p_n)-> M_n

By previous lemma: $L(M) = L(M_1) = ... = L(M_n)$ and

M_n has no inaccessible states.

- Conclusion: Removing all inaccessible sates simultaneously from a DFA will not affect the language it accepts.
- In fact the conclusion holds for all NFAs we well.
 Pf: left as an exercise.
- Problem: Given a DFA (or NFA), how to find all inaccessible states ?

HOW TO FIND ALL ACCESSIBLE STATES

• A state is said to be accessible if it is not inaccessible.

Note: the set of accessible states A(M) of a NFA M is

 $\{q \mid \exists x \in \Sigma^*, q \in \Delta(S,x) \}$

and hence can be defined by induction.

 Let A_k be the set of states accessible from initial states of M by at most k steps of transitions.

I.e., $A_k = \{q \mid \exists x \in \Sigma^* \text{ with } |x| \le k \text{ and } q \in \Delta(S,x) \}$

- What is the relationship b/t A(M) and A_ks? \circ sol: A(M) = U_{k≥0} A_k. Moreover A_k \subseteq A_{k+1}
- What is A_0 and the relationship b/t A_k and A_{k+1} ? Formal definition: $M=\langle Q, \Sigma, \delta, S, F \rangle$: any NFA.
 - Basis: Every start state $q \in S$ is accessible.($A_0 \subseteq A(M)$)
 - ${\rm O}$ Induction: If q is accessible and p in δ (q,a) for some a $\in\!\Sigma,$ then p is accessible.

 $(A_{k+1}=A_k \cup \{p \mid p \in \delta(q,a) \text{ for some } q \in A_k \text{ and } a \in \Sigma.)$

Area (M) {// M = $\langle Q, \Sigma, \delta, S, P \rangle$ Find ALL 1A = 5; ESSIB/AE ASTATES: 2. B = $\Delta(A) - A$; // B = $A_1 - A_0$ 3. For k = 0 to |Q| do { // A = A_k ; B = $A_{k+1} - A_k$ 4. A = A U B ; // A = A_{k+1} B = $\Delta(B) - A$; // B = $\Delta(B) - A = \Delta(A_{k+1} - A_k) - A_{k+1} = A_{k+2} - A_{k+1}$; if B = {} then break }; 5. Return(A) }

```
Function \Delta(S) { // = U_{p \in S, a \in \Sigma}, q \in \delta(p,a)

1. \Delta = \{\};

2. For each q in Q do

for each a in \Sigma do

\Delta = \Delta \ U \ \delta (q,a);

3. Return(\Delta) }
```

- Minimization process for a DFA:
 Minimiza
- What does it mean that two states are equivalent?
 both *have the same observable behaviors* .i.e.,
 there is no way to distinguish their difference.
- Definition: we say state p and q are *distinguishable* if there exists a string x∈Σ* s.t. (Δ (p,x)∈F ⇔ Δ (q,x) ∉ F).
 - O If there is no such string, i.e. $\forall x \in \Sigma^*(\Delta(p,x) \in F \Leftrightarrow \Delta(q,x) \in F)$, we say p and q are equivalent (or indistinguishable).
- Example[13.2]: (next slide)
 - o state 3 and 4 are equivalent.
 - States 1 and 2 are equivalent.
- Equivalents sates can be merged to form a simpler machine.

Example 13.2: Witness for states that are distinguishable

- 1. States b/t {0,3,4} and {1,2,5} can be distinguished by the empty string ϵ .
- 2. States b/t {1,2} and {5} can be distinguished by a or b.
- 3. States b/t {0} and {3,4} can be distinguished by aa,ab, ba or bb.
- 4. There is no way to distinguish b/t 1 and 2, and b/t 3 and 4.

• $M=(Q, \Sigma, \delta, s, F)$: a DFA. • Quarelation on Q defined by UCTION

 $p \approx q \iff \forall x \in \Sigma^* \Delta(p,x) \in F \text{ iff } \Delta(q,x) \in F$

- Property: ≈ is an equivalence (i.e., reflexive, symmetric and transitive) relation.
- Hence it partitions Q into equivalence classes :

 $\begin{array}{l} \circ [p] =_{def} \{q \in Q \mid p \approx q\} \text{ for } p \in Q. \\ \circ Q/\approx =_{def} \{[p] \mid p \in Q\} \text{ is the quotient set.} \\ \circ \text{ Every } p \in Q \text{ belongs to exactly one class (which is [p])} \\ \circ p \approx q \text{ iff } [p]=[q] //why? \text{ since } p \approx q \text{ implies } p \approx r \text{ iff } q \approx r. \end{array}$

- Ex: From Ex 13.2, we have 0, $1 \approx 2$, $3 \approx 4$, 5.
 - $\circ => [0] = \{0\}, [1] = \{1,2\}, [2] = \{1,2\}, [3] = \{3,4\}, [4] = \{3,4\} \text{ and }$
 - \circ [5] = {5}. As a result, [1] = [2] = {1,2}, [3]=[4]= {3,4} and
 - $\bigcirc \ \mathbb{Q}/\approx = \{ \ \{0\}, \{1,2\}, \{3,4\}, \{5\}\} = \{ \ [0], [1], [2], [3], [4], [5] \ \} = \{ [0], [1], [3], [5] \ \}.$

```
• Define a DFA called the quotient machine M/\approx = \langle Q', \Sigma, \delta', s', F' \rangle
   Where FUNCTION \wedge' IS WELL-DEFINED.
   \bigcirc Q'=Q/≈; s'=[s]; F'={[p] | p ∈ F}; and
   \circ \delta'([p],a) = [\delta(p,a)] for all p \in Q and a \in \Sigma. But well-defined?
Lem 13.5. if p \approx q then \delta (p,a) \approx \delta (q,a).
  Hence [p]=[q] \Rightarrow p \approx q \Rightarrow \delta(p,a) \approx \delta(q,a) \Rightarrow [\delta(p,a)] = [\delta(q,a)]
Pf: By def. [\delta (p,a)] = [\delta(q,a)] iff \delta(p,a) \approx \delta (q,a)
   iff \forall y \in \Sigma^* \Delta(\delta(p,a), y) \in F \Leftrightarrow \Delta(\delta(q,a), y) \in F
   iff \forall y \in \Sigma^* \Delta (p, ay) \in F \Leftrightarrow \Delta (q,ay) \in F
   if p \approx q.
Lemma 13.6. p \in F iff [p] \in F'.
pf: => : trival.
  <=: need to show that if q \approx p and p \in F, then q \in F.
```

But this is trivial since $p = \Delta(p,\epsilon) \in F$ iff $\Delta(q, \epsilon) = q \in F$

PROPERTIES OF THE QUOTIENT MACHINE.

```
Lemma 13.7: \forall x \in \Sigma^*, \Delta'([p],x) = [\Delta(p,x)].
 Pf: By induction on |x|.
 Basis x = \varepsilon: \Delta'([p], \varepsilon] = [p] = [\Delta(p, \varepsilon)].
Ind. step: Assume \Delta'([p],x) = [\Delta(p,x)] and let a \in \Sigma.
\Delta'([p],xa) = \delta'(\Delta'(p,x),a) = \delta'([\Delta(p,x)],a) --- \text{ ind. hyp.}
   =[\delta(\Delta(\mathbf{p},\mathbf{x}),\mathbf{a})] -- def. of \delta'
   = [\Delta (p,xa)]. -- def. of \Delta.
Theorem 13.8: L(M/\approx) = L(M).
Pf: \forall x \in \Sigma^*,
x \in L(M/\approx) iff \Delta'(s',x) \in F'
 iff \Delta'([s],x) \in F' iff [\Delta(s,x)] \in F' --- lem 13.7
iff \Delta(s,x) \in F --- lem 13.6
iff x \in L(M).
```

• Theorem: $((M/\approx)/\approx) = M/\approx$ Pf: Denote the second \approx by ~. I.e. [p] ~ [q] iff $\forall x \in \Sigma^*, \Delta'([p],x) \in F' \Leftrightarrow \Delta'([q],x) \in F'$

Now

[p] ~ [q]

iff $\forall x \in \Sigma^*$, $\Delta'([p],x) \in F' \Leftrightarrow \Delta'([q],x) \in F' -- def.of \sim$

iff $\forall x \in \Sigma^*$, $[\Delta(p,x)] \in F' \Leftrightarrow [\Delta(q,x)] \in F' \rightarrow \text{lem 13.7}$

- $\text{iff } \forall x \in \Sigma^*, \Delta(p,x) \in \mathsf{F} \Leftrightarrow \Delta(q,x) \in \mathsf{F} \qquad \text{--lem 13.6} \\$
- iff $p \approx q$ -- def of \approx

iff [p] = [q] -- property of equivalence \approx

1. Write down a table of all pairs {p,q},

- Aintiany MarkedON ALGORITHM:ax
- 2. mark {p,q} if $p \in F$ and $q \notin F$ or vice versa.
- 3. Repeat until no additional pairs marked:
- 3.1 if \exists unmarked pair {p,q} s.t. { δ (p,q), δ (q,a) } is marked for some a $\in \Sigma$, then mark {p,q}.

δ(p,a)

(q,a)

:X

Q

- 4. When done, $p \approx q$ iff {p,q} is not marked.
- Let M_k ($k \ge 0$) be the set of pairs marked after the k-th iteration of step 3. [and M_0 is the set of pairs before step 3.] Notes: (1) $M = U_{k \ge 0} M_k$ is the final set of pairs marked by the alg. (2) The algorithm must terminate since there are totally only C(n,2) pairs and each iteration of step 3 must mark at least one pair for it to not terminate..

AN EXAMPLE:							
		a	b				
• The D	FA: (Ex 13.2)						
	>0 (_/(_/(_/(_/(1	2				
	10	2					
	1F	3	4				
	2F	4	3				
	6 1	Т	5				
	3	5	5				
	4	5	5				
	5F	5	5				

INITIAL TABLE						
	1					
	2	-	-			
	3	-	-	-		
	4	-	-	-	-	
	5	-	-	-	-	-
		0	1	2	3	4

AFTER STEP 2 (M₀)

1	M	(~~0)			
2	Μ	-			
3	-	М	М		
4	-	М	М	-	
5	Μ	-	-	М	М
	0	1	2	3	4

AFTE	R FIF	M P	ASS C	F ST	EP 3	(M ₁)
	2	М	-			
	3	-	Μ	Μ		
	4	-	Μ	Μ	-	
	5	Μ	Μ	Μ	М	М
		0	1	2	3	4

2ND PASS OF STEP 3. $(M_2 \& M_3)$

The r	epult:1	m≆ 2 an	d $3 \approx 4$.			
	2	Μ	-			
	3	M2	Μ	Μ		
	4	M2	Μ	Μ	-	
	5	Μ	M1	M1	Μ	Μ
		0	1	2	3	4

CORRECTNESS OF THE MINIMIZATION ALGORITHM

- Let M_k ($k \ge 0$) be the set of pairs marked after the k-th itration of step 3. [and M_0 is the set of pairs befer step 3.]
- Lemma: {p,q} $\in M_k$ iff $\exists x \in \Sigma^*$ of length $\leq k$ s.t. $\Delta(p,x) \in F$ and $\Delta(q,x) \notin F$ or vice versa,

Pf: By ind. on k. Basis k = 0. trivial. Ind. step: $\exists x \in \Sigma^*$ of length $\leq k+1$ s.t. $\Delta(p,x) \in F \Leftrightarrow \Delta(q,x) \notin F$, iff $\exists y \in \Sigma^*$ of length $\leq k$ s.t. $\Delta(p,y) \in F \Leftrightarrow \Delta(q,y) \notin F$, or $\exists ay \in \Sigma^* \text{ of length } \leq k+1 \text{ s.t. } \Delta(\delta(p,a),y) \in F \Leftrightarrow \Delta(\delta(q,a),y) \notin F,$ iff $\{p, q\} \in M_k$ or $\{\delta(p,a), \delta(q,a)\} \in M_k$ for some $a \in \Sigma$. iff $\{p,q\} \in M_{k+1}$. **Theorem 14.3**: The pair {p,q} is marked by the algorithm iff not($p \approx$ q) (i.e., $\exists x \in \Sigma^*$ s.t. \triangle (p,x) \in F $\Leftrightarrow \triangle$ (q,x) \notin F) Pf: not(p \approx q) iff $\exists x \in \Sigma^*$ s.t. Δ (p,x) \in F $\Leftrightarrow \Delta$ (q,x) \notin F iff $\{p,q\} \in M_k$ for some $k \ge 0$ iff $\{p,q\} \in M = U_{k>0}M_k$.