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Problems: 

1. Given a DFA M with k states, is it possible to find an 
equivalent DFA M’ (I.e., L(M) = L(M’)) with state 
number fewer than k ? 

2. Given a regular language A, how to find a machine 
with minimum number of states ? 

Ex: A = L((a+b)*aba(a+b)*) can be accepted by the 
following NFA: 

 

By applying the subset  

construction, we can construct 

a DFA M2 with 24=16 states, 

 of which only 6 are accessible from the initial state {s}. 
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 A state p  Q is said to be inaccessible (or unreachable) [from the 
initial state] if there exists no string x in S* s.t.  

   D(s,x) = p (I.e., p  {q | xS*, D(s,x) = q }. ) 

 

Theorem: Removing inaccessible states from a machine M does not 
affect the language it accepts. 

Pf:  M = <Q,S,d, s,F> : a DFA;      p : an inaccessible state 

 Let M’ =<Q \ {p}, S, d’, s, F\{p}> be the DFA M with p removed.  
Where d’:(Q\{p})xS  Q\{p}  is defined by  

 d’(q,a) = r if d (q, a) =r and q, rQ \{p}. 

 

For M and M’ it can be proved by induction on x that 

for all x in S*, D (s,x) = D’ (s,x). 

Hence for all x  S*, x  L(M) iff D(s,x) = q  F 

  iff D’(s,x) = q  F\{p} iff x  L(M').  



 M : any DFA with n inaccessible states p1,p2,…,pn. 

Let M1,M2,..,Mn+1 are DFAs s.t. DFA Mi+1 is constructed from 
Mi by removing pi from Mi . I.e., 

 M -rm(p1)-> M1 -rm(p2)-> M2 - …  Mn -rm(pn)-> Mn 

By previous lemma: L(M) = L(M1) = …=L(Mn) and 

                      Mn has no inaccessible states. 

 Conclusion: Removing all inaccessible sates 
simultaneously from a DFA will not affect the language it 
accepts. 

 In fact the conclusion holds for all NFAs we well.  

   Pf: left as an exercise.   

 

 Problem: Given a DFA (or NFA), how to find all inaccessible 
states ?  



 A state is said to be accessible if it is not inaccessible. 

Note: the set of accessible states  A(M)  of a NFA M is 

        {q|  xS*, q  D(S,x) }  

       and hence can be defined by induction. 

 Let Ak be the set of states accessible from initial states of M by 
at most k steps of transitions. 

   I.e., Ak = {q| xS* with |x|  k and q  D (S,x) } 

 What is the relationship b/t  A(M) and Aks ? 
 sol: A(M)  = Uk≥0 Ak. Moreover Ak Ak+1   

 What is A0 and the relationship b/t Ak and Ak+1 ? 

Formal definition: M=<Q,S,d, S,F> : any NFA. 
 Basis: Every start state q  S is accessible.(A0  A(M)) 

 Induction: If q is accessible and p in d (q,a) for some a S, then p is 
accessible. 

  (Ak+1=Ak U {p | p d(q,a) for some qAk and a  S.) 

 



 REACH(M) {   // M = <Q,S,d, S ,F> 

1. A = S;               // A = A0 

2. B = D (A) - A ;     // B = A1 – A0 

3. For k = 0 to |Q| do { // A = Ak ; B = AK+1 - Ak 

4.  A = A U B ;       // A = AK+1  

      B = D(B) - A;    // B = D(B)–A=D(AK+1–Ak)–AK+1=AK+2–Ak+1 ;  

      if B = {} then break  };  

5. Return(A)  } 

 

Function D(S) {     // =  UpS , aS, qd(p,a)  

1. D  = {}; 

2. For each q in Q do 

     for each a in S do 

       D = D  U d (q,a); 

3.  Return(D) }  
      

 

       

        



 Minimization process for a DFA: 
 1. Remove all inaccessible states 

 2. Merge all equivalent states 

 What does it mean that two states are equivalent? 
 both have the same observable behaviors .i.e., 

 there is no way to distinguish their difference. 

 Definition: we say state p and q are distinguishable if there 
exists a string xS* s.t. (D (p,x)F  D (q,x)  F). 
 If there is no such string, i.e.xS*(D(p,x)FD(q,x)F), we say p 

and q are equivalent (or indistinguishable).  

 Example[13.2]: (next slide) 
 state 3 and 4 are equivalent. 

 States 1 and 2 are equivalent. 

 Equivalents sates can be merged to form a simpler machine. 
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Example 13.2: Witness for states that are distinguishable 

2 3 

1 0 

5 4 

2 3 

1 0 

5 4 

1. States b/t {0,3,4} and {1,2,5} can be distinguishsed by the empt

y string e. 

2. States b/t {1,2} and {5} can be distinguished by a or b. 

3. States b/t {0} and {3,4} can be distinguished by aa,ab, ba or bb. 

4. There is no way to distinguish b/t 1 and 2, and b/t 3 and 4. 

2 3 

1 0 

5 4 



 M=(Q, S, d, s, F): a DFA. 

  : a relation on Q defined by: 
p  q <=> xS*  D(p,x)F  iff  D (q,x)  F 

 Property:   is an equivalence (i.e., reflexive, symmetric and 
transitive) relation. 

 Hence it partitions Q into equivalence classes : 

 [p] =def  {q  Q | p  q} for p  Q.   

Q/ =def {[p] | p  Q} is the quotient set. 

 Every p  Q belongs to exactly one class (which is [p] ) 

 p  q  iff [p]=[q]  //why? since p  q  implies pr iff qr. 

 Ex: From Ex 13.2, we have 0, 1  2, 3   4, 5. 

 => [0] = {0}, [1] = {1,2}, [2]={1,2}, [3]={3,4},[4]={3,4} and 

 [5] = {5}. As a result, [1] = [2] = {1,2}, [3]=[4]= {3,4} and 

 Q/ = { {0},{1,2},{3,4},{5}} = { [0],[1],[2],[3],[4],[5] } = {[0],[1],[3],[5] }. 



 Define a DFA called the quotient machine M/ = <Q’,S, d’,s’,F’> 
where 

 Q’=Q/ ;  s’=[s];   F’={[p] | p  F};  and 

 d’([p],a)=[d (p,a)] for all pQ and aS. But well-defined? 

Lem 13.5. if p  q then d (p,a)  d (q,a).  

   Hence [p]=[q]  pq  d(p,a)  d(q,a)  [d (p,a)] = [ d (q,a)] 

Pf: By def. [d (p,a)] = [d(q,a)]  iff d(p,a)  d (q,a)  

  iff ∀y∈S* D(d (p,a),y ) ∈ F  D(d (q,a),y) ∈ F 

 iff ∀ y ∈ S* D (p, ay) ∈ F  D (q,ay) ∈ F 

 if p  q.  

Lemma 13.6. p ∈ F iff [p] ∈ F’. 

pf: => : trival. 

  <=: need to show that if q  p and p ∈ F, then q ∈ F. 

 But this is trivial since p = D(p,e) ∈ F iff D (q, e) = q ∈ F 

 



Lemma 13.7: ∀ x ∈ S*, D’([p],x) = [D(p,x)]. 

 Pf: By induction on |x|.  

 Basis x = e: D’([p], e] = [p] = [D(p, e)]. 

 Ind. step: Assume D’([p],x) = [D(p,x)] and let a ∈ S. 

 D’([p],xa) = d’(D’(p,x),a) = d’([D(p,x)],a) --- ind. hyp. 

   =[d(D (p,x),a)]   -- def. of d’ 

   = [D (p,xa)].    -- def. of D. 

Theorem 13.8: L(M/ ) = L(M). 

Pf: ∀ x ∈ S*, 

 x ∈ L(M/)  iff D’(s’,x) ∈ F’ 

 iff D’([s],x) ∈ F’   iff [D(s,x)] ∈ F’ --- lem 13.7 

 iff  D (s,x) ∈ F   --- lem 13.6 

 iff  x ∈ L(M). 



 Theorem: ((M/) /  ) = M/  

Pf: Denote the second  by . I.e. 

 [p]  [q] iff ∀ x ∈ S*, D’([p],x) ∈ F’  D’([q],x) ∈ F’ 

 

Now  

[p]  [q]    

iff  ∀ x ∈ S*, D’([p],x) ∈ F’  D’([q],x) ∈ F’ -- def.of 

iff  ∀ x ∈ S*, [D(p,x)] ∈ F’  [D(q,x)] ∈ F’  -- lem 13.7 

iff  ∀ x ∈ S*, D (p,x) ∈ F  D (q,x) ∈ F     -- lem 13.6 

iff  p  q     -- def of  

iff  [p] = [q]    -- property of equivalence  



1. Write down a table of all pairs {p,q},  

      initially unmarked. 

2. mark {p,q} if p ∈ F and q ∉ F or vice versa. 

3. Repeat until no additional pairs marked: 

 3.1 if ∃ unmarked pair {p,q} s.t. {d(p,q), d(q,a) } is marked for 

some a ∈ S, then mark {p,q}. 

4. When done, p  q iff {p,q} is not marked. 

Let Mk ( k ≥ 0 ) be the set of pairs marked after the k-th 

iteration of step 3. [ and M0 is the set of pairs before step 3.] 

Notes: (1) M = Uk ≥0 Mk is the final set of pairs marked by the 

alg.   (2) The algorithm must terminate since there are 

totally only C(n,2) pairs and each iteration of step 3 must 

mark at least one pair for it to not terminate.. 

:x  

a 

a 

p 

q d (q,a) 

d(p,a) 

:ax  



 The DFA: (Ex 13.2) 

a b 

>0 1 2 

1F 3 4 

2F 4 3 

3 5 5 

4 5 5 

5F 5 5 



 

1 - 

2 - - 

3 - - - 

4 - - - - 

5 - - - - - 

0 1 2 3 4 



 

1 M 

2 M - 

3 - M M 

4 - M M - 

5 M - - M M 

0 1 2 3 4 



 

1 M 

2 M - 

3 - M M 

4 - M M - 

5 M M M M M 

0 1 2 3 4 



 The result : 1  2 and 3  4. 1 M 

2 M - 

3 M2 M M 

4 M2 M M - 

5 M M1 M1 M M 

0 1 2 3 4 



Let Mk ( k ≥ 0 ) be the set of pairs marked after the k-th itration of 
step 3. [ and M0 is the set of pairs befer step 3.] 

Lemma: {p,q} ∈ Mk iff ∃x∈S* of length ≤ k s.t. D(p,x) ∈ F and D(q,x) ∉ 
F or vice versa, 

Pf: By ind. on k.  Basis k = 0. trivial. 

 Ind. step: ∃ x ∈ S* of length ≤ k+1 s.t. D (p,x) ∈ F D (q,x) ∉ F, 

 iff  ∃ y ∈ S* of length ≤ k s.t. D (p,y) ∈ F D (q,y) ∉ F,  or 

    ∃ ay ∈ S* of length ≤ k+1 s.t. D(d (p,a),y) ∈ F D(d(q,a),y) ∉ F, 

 iff  {p , q} ∈ Mk or {d (p,a), d (q,a)} ∈ Mk for some a ∈ S. 

 iff  {p,q} ∈ Mk + 1. 

Theorem 14.3: The pair {p,q} is marked by the algorithm iff  not(p  
q) (i.e., ∃ x ∈ S* s.t. D (p,x) ∈ F  D (q,x) ∉ F) 

Pf: not(p  q) iff ∃ x∈S* s.t. D (p,x) ∈ F D (q,x) ∉ F  

  iff  {p,q}∈ Mk for some k ≥ 0  

  iff {p,q} ∈ M  =  Uk ≥ 0Mk. 


