COURSE: THEORY OF AUTOMATA COMPUTATION

IOPICS TO BE COVERED

- Conversion of NFA to DFA
- Inaccessible states
- How to find all accessible states
- Minimization process

INTRODUCTION

MOTIVATIONS

Problems:

1. Given a DFA M with k states, is it possible to find an equivalent DFA M' (I.e., $L(M)=L\left(M^{\prime}\right)$) with state number fewer than k ?
2. Given a regular language A, how to find a machine with minimum number of states ?
$E x: A=L\left((a+b)^{*} a b a(a+b)^{*}\right)$ can be accepted by the following NFA:

By applying the subset construction, we can construct
 a DFA M2 with $2^{4}=16$ states, of which only 6 are accessible from the initial state $\{s\}$.

- A state $p \in Q$ is said to be inaccessible (or unreachable) [from the initial statel if there exists no string x in Σ^{*} s.t.

$$
\Delta(s, x)=p \text { (l.e., } p \notin\left\{q \mid \exists x \in \Sigma^{*}, \Delta(s, x)=q\right\} \text {.) }
$$

Theorem: Removing inaccessible states from a machine M does not affect the language it accepts.
Pf: $M=<Q, \Sigma, \delta, s, F>: a \operatorname{DFA} ; \quad \mathrm{p}:$ an inaccessible state Let $M^{\prime}=<Q \backslash\{p\}, \Sigma, \delta^{\prime}, s, F \backslash\{p\}>$ be the DFA M with p removed. Where $\delta^{\prime}:(Q \backslash\{p\}) x \Sigma \rightarrow Q \backslash\{p\}$ is defined by
$\delta^{\prime}(q, a)=r$ if $\delta(q, a)=r$ and $q, r \in Q \backslash\{p\}$.
For M and M^{\prime} it can be proved by induction on x that for all x in $\Sigma^{*}, \Delta(\mathrm{~s}, \mathrm{x})=\Delta^{\prime}(\mathrm{s}, \mathrm{x})$.
Hence for all $x \in \Sigma^{*}, x \in L(M)$ iff $\Delta(s, x)=q \in F$
iff $\Delta^{\prime}(s, x)=q \in F \backslash\{p\}$ iff $x \in L\left(M^{\prime}\right)$.

INACCESSIBLE STATES ARE REDUNDANT

- M : any DFA with n inaccessible states $p_{1}, p_{2}, \ldots, p_{n}$.

Let $M_{1}, M_{2}, . ., M_{n+1}$ are DFAs s.t. DFA M_{i+1} is constructed from
M_{i} by removing p_{i} from M_{i}. I.e.,
$M-r m\left(p_{1}\right)->M_{1}-r m\left(p_{2}\right)->M_{2}-\ldots M_{n}-r m\left(p_{n}\right)->M_{n}$
By previous lemma: $\mathrm{L}(\mathrm{M})=\mathrm{L}\left(\mathrm{M}_{1}\right)=\ldots=\mathrm{L}\left(\mathrm{M}_{\mathrm{n}}\right)$ and M_{n} has no inaccessible states.

- Conclusion: Removing all inaccessible sates simultaneously from a DFA will not affect the language it accepts.
- In fact the conclusion holds for all NFAs we well. Pf: left as an exercise.
- Problem: Given a DFA (or NFA), how to find all inaccessible states?

HOW TO FIND ALL ACCESSIBLE STATES

- A state is said to be accessible if it is not inaccessible.

Note: the set of accessible states $A(M)$ of a NFA M is

$$
\left\{q \mid \exists x \in \Sigma^{*}, q \in \Delta(S, x)\right\}
$$

and hence can be defined by induction.

- Let A_{k} be the set of states accessible from initial states of M by at most k steps of transitions.

$$
\text { I.e., } A_{k}=\left\{q \mid \exists x \in \Sigma^{*} \text { with }|x| \leq k \text { and } q \in \Delta(S, x)\right\}
$$

- What is the relationship $b / t A(M)$ and $A_{k} s$?
o sol: $A(M)=U_{k \geq 0} A_{k}$. Moreover $A_{k} \subseteq A_{k+1}$
- What is A_{0} and the relationship $b / t A_{k}$ and A_{k+1} ?

Formal definition: $\mathrm{M}=<\mathrm{Q}, \Sigma, \delta, \mathrm{S}, \mathrm{F}>$: any NFA.

- Basis: Every start state $q \in S$ is accessible. $\left(A_{0} \subseteq A(M)\right)$
- Induction: If q is accessible and p in $\delta(q, a)$ for some $a \in \Sigma$, then p is accessible.

$$
\left(A_{k+1}=A_{k} \cup\left\{p \mid p \in \delta(q, a) \text { for some } q \in A_{k} \text { and } a \in \Sigma .\right)\right.
$$

3. For $k=0$ to $|Q|$ do $\left\{/ / A=A_{k} ; B=A_{k+1}-A_{k}\right.$
4. $A=A \cup B ; \quad / / A=A_{K+1}$

$$
\begin{aligned}
& B=\Delta(B)-A ; \quad / / B=\Delta(B)-A=\Delta\left(A_{k+1}-A_{k}\right)-A_{k+1}=A_{k+2}-A_{k+1} ; \\
& \text { if } B=\{ \} \text { then break }\} ;
\end{aligned}
$$

5. Return(A) \}

Function $\Delta(\mathrm{S})$ \{ $\quad / /=\mathrm{U}_{\mathrm{p} \in \mathrm{S}, \mathrm{a} \in \Sigma,} \mathrm{q} \in \delta(\mathrm{p}, \mathrm{a})$

1. $\Delta=\{ \}$;
2. For each q in Q do for each a in Σ do

$$
\Delta=\Delta \quad \mathrm{U} \delta(\mathrm{q}, \mathrm{a}) ;
$$

3. Return(Δ) \}

- Minimization process for a DFA:

- 2. Merge all equivalent states
- What does it mean that two states are equivalent?
- both have the same observable behaviors i.e.,
- there is no way to distinguish their difference.
- Definition: we say state p and q are distinguishable if there exists a string $x \in \Sigma^{*}$ s.t. $(\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \notin F)$.
\circ If there is no such string, i.e. $\forall x \in \Sigma^{*}(\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \in F)$, we say p and q are equivalent (or indistinguishable).
- Example[13.2]: (next slide)
- state 3 and 4 are equivalent.
- States 1 and 2 are equivalent.
- Equivalents sates can be merged to form a simpler machine.

Example 13.2:

Example 13.2: Witness for states that are distinguishable

1. States $b / t\{0,3,4\}$ and $\{1,2,5\}$ can be distinguishsed by the empt y string ε.
2. States $\mathrm{b} / \mathrm{t}\{1,2\}$ and $\{5\}$ can be distinguished by a or b .
3. States $b / t\{0\}$ and $\{3,4\}$ can be distinguished by aa,ab, ba or bb.
4. There is no way to distinguish $\mathrm{b} / \mathrm{t} 1$ and 2 , and $\mathrm{b} / \mathrm{t} 3$ and 4.

- $M=(Q, \Sigma, \delta, s, F):$ a DFA.
- QLacetatian of Q defined byUCTION
$\mathrm{p} \approx \mathrm{q}<=>\forall \mathrm{x} \in \Sigma^{*} \quad \Delta(\mathrm{p}, \mathrm{x}) \in \mathrm{F}$ iff $\Delta(\mathrm{q}, \mathrm{x}) \in \mathrm{F}$
- Property: \approx is an equivalence (i.e., reflexive, symmetric and transitive) relation.
- Hence it partitions Q into equivalence classes :
$-[p]={ }_{\text {def }}\{q \in Q \mid p \approx q\}$ for $p \in Q$.
$-Q / \approx=_{\text {def }}\{[p] \mid p \in Q\}$ is the quotient set.
- Every $p \in Q$ belongs to exactly one class (which is [p$]$)
$\rho p \approx q$ iff $[p]=[q] / / w h y$? since $p \approx q$ implies $p \approx r$ iff $q \approx r$.
- Ex: From Ex 13.2, we have $0,1 \approx 2,3 \approx 4,5$.
$\bigcirc=>[0]=\{0\},[1]=\{1,2\},[2]=\{1,2\},[3]=\{3,4\},[4]=\{3,4\}$ and
$\circ[5]=\{5\}$. As a result, $[1]=[2]=\{1,2\},[3]=[4]=\{3,4\}$ and
$\circ \mathrm{Q} / \approx=\{\{0\},\{1,2\},\{3,4\},\{5\}\}=\{[0],[1],[2],[3],[4],[5]\}=\{[0],[1],[3],[5]\}$.
- Define a DFA called the quotient machine $\left.M / \approx=<Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right\rangle$ where FUNCTION $\Delta^{\prime} \| S$ WELL=DEF\|NED.
$\circ Q^{\prime}=Q / \approx ; s^{\prime}=[s] ; \quad F^{\prime}=\{[p] \mid p \in F\} ;$ and
$\delta^{\prime}([p], a)=[\delta(p, a)]$ for all $p \in Q$ and $a \in \Sigma$. But well-defined?
Lem 13.5. if $p \approx q$ then $\delta(p, a) \approx \delta(q, a)$.
Hence $[p]=[q] \Rightarrow p \approx q \Rightarrow \delta(p, a) \approx \delta(q, a) \Rightarrow[\delta(p, a)]=[\delta(q, a)]$
Pf: By def. $[\delta(p, a)]=[\delta(q, a)]$ iff $\delta(p, a) \approx \delta(q, a)$
iff $\forall y \in \Sigma^{*} \Delta(\delta(p, a), y) \in F \Leftrightarrow \Delta(\delta(q, a), y) \in F$
iff $\forall y \in \Sigma^{*} \Delta(p, a y) \in F \Leftrightarrow \Delta(q, a y) \in F$
if $p \approx q$.
Lemma 13.6. $p \in F$ iff $[p] \in F^{\prime}$.
pf: => : trival.
$<=$: need to show that if $q \approx p$ and $p \in F$, then $q \in F$.
But this is trivial since $p=\Delta(p, \varepsilon) \in F$ iff $\Delta(q, \varepsilon)=q \in F$

PROPERTIES OF THE QUOTIENT MACHINE.

Lemma 13.7: $\forall x \in \Sigma^{*}, \Delta^{\prime}([p], x)=[\Delta(p, x)]$.
Pf: By induction on $|x|$.
Basis $x=\varepsilon: \Delta^{\prime}([p], \varepsilon]=[p]=[\Delta(p, \varepsilon)]$. Ind. step: Assume $\Delta^{\prime}([p], x)=[\Delta(p, x)]$ and let $a \in \Sigma$.
$\Delta^{\prime}([p], x a)=\delta^{\prime}\left(\Delta^{\prime}(p, x), a\right)=\delta^{\prime}([\Delta(p, x)], a)$--- ind. hyp.
$=[\delta(\Delta(p, x), a)] \quad--$ def. of δ^{\prime}
$=[\Delta(p, x a)]$. $\quad-$ def. of Δ.
Theorem 13.8: $L(M / \approx)=L(M)$.
Pf: $\forall x \in \Sigma^{*}$,
$x \in L(M / \approx)$ iff $\Delta^{\prime}\left(s^{\prime}, x\right) \in F^{\prime}$
iff $\Delta^{\prime}([s], x) \in F^{\prime} \quad$ iff $[\Delta(s, x)] \in F^{\prime}---$ lem 13.7
iff $\Delta(s, x) \in F \quad$--- lem 13.6
iff $x \in L(M)$.

Pf: Denote the second \approx by \sim.t.e.
$[p] \sim[q]$ iff $\forall x \in \Sigma^{*}, \Delta^{\prime}([p], x) \in F^{\prime} \Leftrightarrow \Delta^{\prime}([q], x) \in F^{\prime}$

Now
[p] ~ [q]
iff $\forall x \in \Sigma^{*}, \Delta^{\prime}([p], x) \in F^{\prime} \Leftrightarrow \Delta^{\prime}([q], x) \in F^{\prime}-$ def.of
iff $\forall x \in \Sigma^{*},[\Delta(p, x)] \in F^{\prime} \Leftrightarrow[\Delta(q, x)] \in F^{\prime}$-- lem 13.7
iff $\forall x \in \Sigma^{*}, \Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \in F \quad$-- lem 13.6
iff $\mathrm{p} \approx \mathrm{q}$-- def of \approx
iff $[p]=[q] \quad$-- property of equivalence \approx

1. Write down a table of all pairs $\{p, q\}$,

2. mark $\{p, q\}$ if $p \in F$ and $q \notin F$ or vice versa.

3. Repeat until no additional pairs marked:
3.1 if \exists unmarked pair $\{p, q\}$ s.t. $\{\delta(p, q), \delta(q, a)\}$ is marked for some $a \in \Sigma$, then mark $\{p, q\}$.
4. When done, $p \approx q$ iff $\{p, q\}$ is not marked.

Let $M_{k}(k \geq 0)$ be the set of pairs marked after the k-th iteration of step 3. [and M_{0} is the set of pairs before step 3.]
Notes: (1) $M=U_{k \geq 0} M_{k}$ is the final set of pairs marked by the alg. (2) The algorithm must terminate since there are totally only $\mathrm{C}(\mathrm{n}, 2)$ pairs and each iteration of step 3 must mark at least one pair for it to not terminate..

INITI|AL-TABLE

\section*{AFTER STEFP $2\left(M_{0}\right)$
 | 2 | M | - | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | - | M | M | | |
| 4 | - | M | M | - | |
| 5 | M | - | - | M | M |
| | 0 | 1 | 2 | 3 | 4 |}

\section*{AFTER FIRST PASS OF STEP 3 (MA)
 | 2 | M | - | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | - | M | M | | |
| 4 | - | M | M | - | |
| 5 | M | M | M | M | M |
| | 0 | 1 | 2 | 3 | 4 |}

2ND PASS OF STEP 3. $\left(M_{2} \& M_{3}\right)$

- The repult: 1 n 2 and $3 \approx 4$.

2	M	-			
3	M2	M	M		
4	M2	M	M	-	
5	M	M1	M1	M	M
	0	1	2	3	4

CORRECTNESS OF THE MINIMIZATION ALGORITHM

Let M_{k} ($k \geq 0$) be the set of pairs marked after the k-th itration of step 3. [and M_{0} is the set of pairs befer step 3.]
Lemma: $\{p, q\} \in \mathrm{M}_{\mathrm{k}}$ iff $\exists \mathrm{x} \in \Sigma^{*}$ of length $\leq \mathrm{k}$ s.t. $\Delta(\mathrm{p}, \mathrm{x}) \in \mathrm{F}$ and $\Delta(\mathrm{q}, \mathrm{x}) \notin$ F or vice versa,
Pf: By ind. on k. Basis $k=0$. trivial.
Ind. step: $\exists x \in \Sigma^{*}$ of length $\leq k+1$ s.t. $\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \notin F$,
iff $\exists y \in \Sigma^{*}$ of length $\leq k$ s.t. $\Delta(p, y) \in F \Leftrightarrow \Delta(q, y) \notin F$, or \exists ay $\in \Sigma^{*}$ of length $\leq k+1$ s.t. $\Delta(\delta(p, a), y) \in F \Leftrightarrow \Delta(\delta(q, a), y) \notin F$,
iff $\{p, q\} \in M_{k}$ or $\{\delta(p, a), \delta(q, a)\} \in M_{k}$ for some $a \in \Sigma$.
iff $\{p, q\} \in M_{k+1}$.
Theorem 14.3: The pair $\{p, q\}$ is marked by the algorithm iff $\operatorname{not}(p \approx$ q) (i.e., $\exists x \in \Sigma^{*}$ s.t. $\left.\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \notin F\right)$

Pf: $\operatorname{not}(p \approx q)$ iff $\exists x \in \Sigma^{*}$ s.t. $\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \notin F$
iff $\{p, q\} \in M_{k}$ for some $k \geq 0$
iff $\{p, q\} \in M=U_{k \geq 0} M_{k}$.

