COURSE:
 THEORY OF AUTOMATA COIVIPUTATION

Topics to be covered

- Mealy Machine
- Moore Machine

A Moore Machine

Definition of a Moore Machine

- A finite set of states
- q_{0}, q_{1}, q_{2}, etc.
- q_{0} is the start state
- Alphabet of input letters
- Alphabet of output letters
- Transitions
- A unique one for each letter and each state
- Output Table
- A letter for each state

Moore Machine for aba

Defining a Language

- To change a FA into a Moore machine which accepts the same language
- Name each state
- Name the Start state q_{0}
- Output 0 in all non-final states
- Output 1 in all Final states.
- A string is accepted if after it has been completed read in the last letter printed is 1.

A Mealy Machine

Q old	IN	Q $_{\text {new }}$	OUT
q_{0}	a	q_{1}	1
q_{0}	b	q_{2}	0
q_{1}	a	q_{1}	1
q_{1}	b	q_{1}	1
q_{2}	a	q_{1}	0
q_{2}	b	q_{2}	0

Definition of a Mealy Machine

- A finite set of states
- q_{0}, q_{1}, q_{2}, etc.
- q_{0} is the start state
- Alphabet of input letters
- Alphabet of output letters
- Transitions
- A unique one for each letter and each state
- Each transition also has one output letter

Equivalence of Machines

- Every Moore machine can be turned into a Mealy machine.
- Every Mealy machine can be turned into a Moore machine.
- Every regular language can be defined by Moore machine or a Mealy machine.
\square All languages defined by a Moore machine or a Mealy machine are regular.

