COURSE: THEORY OF AUTOMATA COMPUTATION

Topics to be covered

Mealy MachineMoore Machine

A Moore Machine

Definition of a Moore Machine

- A finite set of states
 - q₀, q₁, q₂, etc.
 - q₀ is the start state
- Alphabet of input letters
- Alphabet of output letters
- Transitions
 - A unique one for each letter and each state
- Output Table
 - A letter for each state

Moore Machine for aba

Defining a Language

- To change a FA into a Moore machine which accepts the same language
 - Name each state
 - Name the Start state q₀
 - Output 0 in all non-final states
 - Output 1 in all **Final states**.
- A string is accepted if after it has been completed read in the last letter printed is 1.

A Mealy Machine

Q_{old}	IN	Q _{new}	OUT
q ₀	а	q ₁	1
q ₀	b	q ₂	0
q ₁	а	q ₁	1
q ₁	b	q ₁	1
q ₂	а	q ₁	0
q ₂	b	Q ₂	0

Definition of a Mealy Machine

A finite set of states

- q₀, q₁, q₂, etc.
- q₀ is the start state
- Alphabet of input letters
- Alphabet of output letters
- Transitions
 - A unique one for each letter and each state
 - Each transition also has one output letter

Equivalence of Machines

- Every Moore machine can be turned into a Mealy machine.
- Every Mealy machine can be turned into a Moore machine.
- Every regular language can be defined by Moore machine or a Mealy machine.
- All languages defined by a Moore machine or a Mealy machine are regular.