


 Limitations of FSM 

 



Problem: Is there any set not regular ?            

 ans: yes! 

 

 example:  B = {anbn | n  0 } = {e,ab,aabb,aaabbb,…} 

 

 Intuition: Any machine accepting B must be able to 

remember the number of a’s  it has scanned before 

encountering the first b, but this requires infinite amount of 

memory (states) and is beyond the capability of any FA , 

which has only a finite amount of  memory (states). 



Lemma 1: Let M = (Q, S, d, s, F) be any DFA accepting B. 
Then for all non-negative numbers m, n , m n implies 
D(s, am)  D(s, an). 

pf:  Assume D(s, am) = D(s, an) from some m   n.  Then  D(s, 
ambn) = D( D(s, am), bn)  

                               = D( D(s, an), bn)   = D(s, an bn)F 

    It implies ambn L(M) = B. But ambn  B since m  n. Hence 
D(s, am)  D(s, an) for all m n. 

Theorem: B is not regular. 
Pf: Assume B is regular and accepted by some DFA M with k 

states. 

 But by Lemma1, M must have an infinite number of states ( 

 since all D(s, am)Q (m = 0,1,2,…) must be distinct.). This 
contradicts the requirement that the state set Q of M is 
finite. 



 C= {a2n | n > 0} = {a, aa, aaaa, aaaaaaaa, … } is nonregular 

pf: assume C is regular and is accepted by a DFA with k 
states. 

 Let n > k and x = a2n  C. Now consider the sequence of 
states: D(s,a), D(s,aa),…., D(s,an),     

   s – a – s1 – a – s2 – …   si – a – si+1 – a… -- si+d -- a -- … -- sn. 

by pigeonhole principle, there are 0<i<i+d  n s.t.  

    D(s,ai) = D(s,ai+d)  [ = p]  

 let 2n = i + d + m. 

 => D(s, a2n+d) = D(s, aiadadam) = D(s,aiadam) = D(s, a2n)  F. 

  But  since 2n + d < 2n + n < 2n+2n = 2 n+1, which is the next 
power of 2 > 2n, Hence a2n+d  C  

=> the DFA also accepts  a string ∉ C,   a contradiction! 

 Hence C is not regular. 

 



 For an FA to accept a long string s ( its number of states),  the visited 
path for s must contains a cycle and hence can be cut or repeated to 
accept also many new strings. 

cut 

 

repeat 



Theorem 11.1: If A is a regular set, then 

(P):  $ k > 0 s.t. for any string xyz  A with |y|  k, 

          there exists a decomposition y = uvw    s.t. 

         v  e and for all i  0,  the string xuviwz  A. 

pf: Similar to the previous examples. Let k = |Q| where Q is the set of states in 

a DFA accepting A. Also let s and F be the initial and set of final states of  the 

FA, respectively. Now if there is a string xyz  A with |y|  k, consider the 

sequence of states: 

                       D(s,xy0), D(s, xy1), D(s,xy2), … D(s, xyk), 

where yj (j = 0..k) denote the prefix of y of the first j symbols. Since there are 

k+1 items in the sequence, each a state in Q, by pigeonhole principle, there 

must exist  two items D(s, xym), D(s, xyn) corresponding to the same state.  

Without loss of generality, assume m < n. Now let u = ym, yn = u v and y= uvw.  

We thus have D(s, xuwz) = D(s, xym wz)   = D(s, xynwz) = D(s, xuvwz)  F 

Likewise, for all j > 1, D(s, xuvjwz) = D(xuv vj-1 wz) = D(xuvj-1 wz) = …   = D(xuvj-2 

wz) = … =D(s,xuvwz)  F.  QED 



Theorem 11.1: Let A be any language. If A is a regular, then 

(P):  $ k > 0 s.t. for any string xyz  A with |y|  k, 

          there exist a decomposition y = uvw    s.t. 

         v  e and for all i  0,  the string xuviwz  A. 

 

Theorem 11.2 (pumping lemma, the contropositive form) 

If A is  any language satisfying the property (~P): 

   k> 0 $ xyz  A s.t. |y|  k and u,v,w with uvw = y and v 
 e , there exists an i  0 s.t. xuvivw  A, 

then A is not regular.  [ ~P means  

for any k > 0, there is a substring of length ≥ k [of a member] 
of A, a cut or a certain duplicates of the middle of any 3-
segment decomposition of which will produce a string 	  
A.  ] 



1. Two players:  

 You (want to show a theorem T holds) 

 Demon (the opponent want to show T does not hold) 

 rules: If the game (or proposition) G is 

 x:U, F   ==> D pick a member a of U and continue the 
game F(a). 

 $x:U, F   ==> Y choose a nmember b of U and continue the 
game F(b). 

 if G has no quantification then end. 

 Result:  

 Y win if the resulting proposition holds 

 D wins o/w 

 T holds if Y has a winning strategy (always wins). 

 

 



 Show that  (x:nat, $ y:nat,  x < y ). 

pf: 

  D: choose any number k for x. 

  Y: let  y be k + 1 

    Result: k < k+1 , so Y wins. 

  Since Y always wins in this game. The result is proved. 

    The winning strategy is the function : k |-> k+1. 

 Show that (x:nat, $ y:nat,  y < x ). 

pf:  D: pick number 0 for x 

      Y:  either fail or  

            pick a number m for y. 

      D wins since ~( 0 < m).  

      Hence the statement is not proved. 

 



1. Two players:  

 You (want to show that ~P holds and A is not regular) 

 Demon (the opponent want to show that P holds) 

2 The game proceeds as follows: 

 1. D picks a k> 0    (if A is regular, D’s best strategy is to pick k = 

                                              #states of a FA accepting A) 

 2. Y picks x,y,x with xyz  A and |y|  k. 

 3. D picks u,v,w s.t. y = uvw and v  e. 

 4. Y picks i  0 

3. Finally Y wins if xuviwz  A and  D wins if xuviwz  A. 

4. By Theorem 11.2, A is not regular if there is a winning 

strategy according to which Y always win. 

Note: P is a necessary but not a sufficient condition for the 

regularity of A (i.e., there is nonregular set A satisfying P). 



 Ex1: Show the set A = {anbm | n  m } is not regular. 

  the proof: 
 1. D gives k     [for any k > 0] 

 2. Y pick x = ak, y = bk, z = e      [$ xyz in A with |y|  k] 

      ==> xyz = akbk  A 

 3. D decompose y = uvw with  [for all uvw with uvw=y and 

     |u|=j, |v|=m > 0 and |w|= n      v  e ] 

 4. Y take i = 2.          [$ i  0  s.t.  xuviwz  A] 

  => xuv2wz = akbjb2mbn = akbk+m  A 

  => Y wins. Hence A is not regular. 

 Ex2: C = {an! | n  0 } is not regular. 

 pf: similar to Ex1. Left as an exercise. 

   hint: for any k > 0 D chooses, let xyz =akxk! ak! e and 
let i = 0. 



 Using closure property of regular sets. 

Ex3: D = { x  {a,b}* | #a(x) = #b(x) } 

            = {e, ab, ba, aabb, abab. baba, bbaa, abba, baab,… } 

            is not regular.  (Why ?) 

if regular => D  a*b* = {anbn | n  0 } = B is regular. 

 But B is not regular,  D thus is not regular. 

 [H2E2:] A: any language; if A is regular, then  

   rev(A) =def {xnxn-1…x1 | x1x2…xn  A} is regular.  

 

  Ex4: A = {anbm | m  n } is not regular. 

 pf: If A is regular =>  rev(A) and h((rev(A)) = {anbm | n  m} 
is regular, where h(a) = b and h(b) = a. 

   => A  h(rev(A)) = {anbn | n  0} is regular, a contradiction!   

 


