COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Equivalence of DFA and NFA
- NFA with ε moves

EQUIVALENCE OF DFAS AND NFAS

- Do DFAs and NFAs accept the same *class* of languages?
 - Is there a language L that is accepted by a DFA, but not by any NFA
 - Is there a language L that is accepted by an NFA, but not by any DFA?
- Observation: Every DFA is an NFA.
- Therefore, if L is a regular language then there exists an NFA M such that L = L(M).
- It follows that NFAs accept all regular languages.
- But do NFAs accept more?

Consider the following DFA: 2 or more c's

a Q = {q₀, q₁, q₂} c $Σ = {a, b, c}$ \mathbf{q}_0 \mathbf{q}_1 Start state is q₀ $F = \{q_2\}$ b b δ: h a \mathbf{q}_{0} \mathbf{q}_0 \mathbf{q}_0 \mathbf{q}_1 \mathbf{q}_1 **q**₁ **q**₁ \mathbf{q}_2 **q**₂ գ_շ **O**_

ΙZ

4

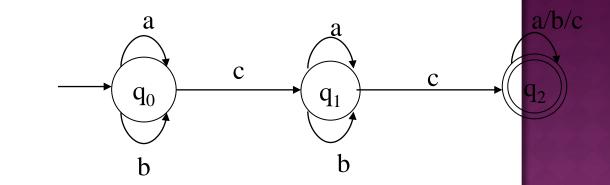
a/b/c

С

• An Equivalent NFA:

Q = {q₀, q₁, q₂} Σ = {a, b, c} Start state is q₀ F = {q₂}

δ:



	a	b	С
\mathbf{q}_0	{q ₀ }	{q ₀ }	{q ₁ }
q ₁	{q ₁ }	{q ₁ }	{q ₂ }
q ₂	{q ₂ }	{q ₂ }	{q ₂ }

- Lemma 1: Let M be an DFA. Then there exists a NFA M' such that L(M) = L(M').
- Proof: Every DFA is an NFA. Hence, if we let M' = M, then it follows that L(M') = L(M).

The above is just a formal statement of the observation from the previous slide.

- Lemma 2: Let M be an NFA. Then there exists a DFA M' such that L(M) = L(M').
- Proof: (sketch)

Let $M = (Q, \Sigma, \delta, q_0, F)$.

Define a DFA M' = (Q', Σ , δ' , q_0' , F') as:

 $Q' = 2^Q$ Each state in M' corresponds to a $= \{Q_0, Q_1, ...,\}$ subset of states from M

where $Q_u = [q_{i0}, q_{i1}, ..., q_{ij}]$

 $F' = \{Q_u \mid Q_u \text{ contains at least one state in } F\}$

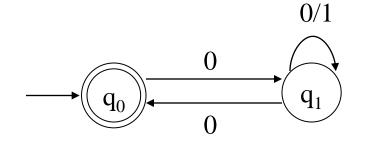
 $\dot{q}_{0} = [q_{0}]$

 $\delta'(Q_u, a) = Q_v \text{ iff } \delta(Q_u, a) = Q_v$

• Example: empty string or start and end with 0

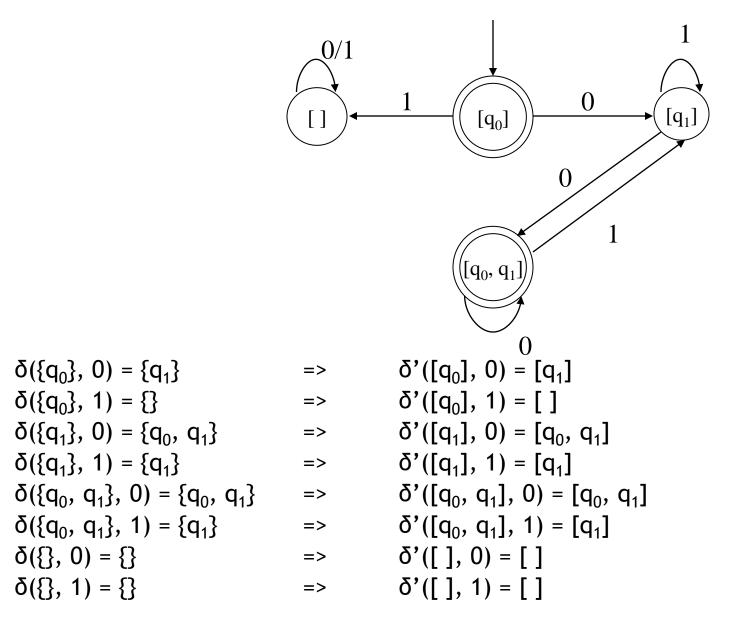
Q = {q₀, q₁} Σ = {0, 1} Start state is q₀ F = {q₁}

δ:



 $\begin{array}{c|c} 0 & 1 \\ q_0 & \{q_1\} & \{\} \\ q_1 & \{q_0, q_1\} & \{q_1\} \\ \end{array}$

• Construct DFA M' as follows:



Theorem: Let L be a language. Then there exists an DFA M such that L = L(M) iff there exists an NFA M' such that L = L(M')

• Proof:

(if) Suppose there exists an NFA M' such that L = L(M'). Then by Lemma 2 there exists an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M). Then by Lemma 1 there exists an NFA M' such that L = L(M').

• **Corollary:** The NFAs define the regular languages.

• Note: Suppose R = {}

$$\begin{split} \delta(\mathsf{R},\,0) &= \delta(\delta(\mathsf{R},\,\epsilon),\,0) \\ &= \delta(\mathsf{R},\,0) \\ &= \bigcup_{q\in R} \delta(\mathsf{q},\,0) \\ &= \{\} & \text{Since } \mathsf{R} = \{\} \end{split}$$

• Exercise - Convert the following NFA to a DFA:

 $Q = \{q_0, q_1, q_2\}$ $\Sigma = \{0, 1\}$ Start state is q_0 $F = \{q_0\}$

δ: 0 1

$$\begin{cases} q_0, q_1 \\ q_0 \\ q_0 \\ \\ q_1 \\ q_1 \\ q_2 \\ \end{cases} \begin{cases} q_2 \\ q_2 \\ q_2 \end{cases}$$

NFAS WITH E MOVES

An NFA-ε is a five-tuple:

 $M = (Q, \Sigma, \delta, q_0, F)$

δ(q,s)

- Q A <u>finite</u> set of states
- Σ A <u>finite</u> input alphabet
- q_0 The initial/starting state, q_0 is in Q
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, which is a total function from Q x Σ U {ε} to 2^{Q}

-The set of all states p such that there

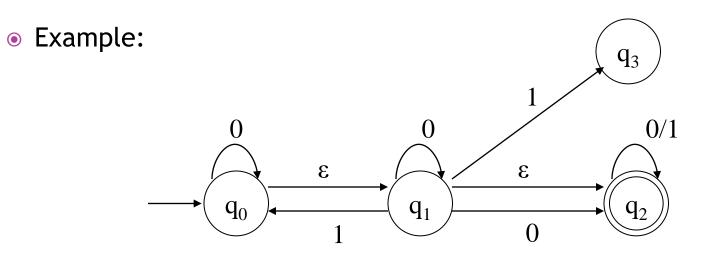
is a

transition labeled a from q to p, where

а

is in $\Sigma \cup \{\epsilon\}$

• Sometimes referred to as an NFA- ε other times, simply as an NFA.



δ:	0	1	3	
q ₀ pro	ceased	{ }	$\{q_1\}$	- A string w = $w_1 w_2 \dots w_n$ is as w = $\varepsilon^* w_1 \varepsilon^* w_2 \varepsilon^* \dots \varepsilon^* w_n \varepsilon^*$
q ₁ 00:	$\{q_1, q_2\}$	$\{q_0, q_3\}$	${q_2}$	- Example: all computations on
q ₂	{q ₂ }	{q ₂ }	{ }	0 ε 0 q ₀ q ₀ q ₁ q ₂
q ₃	{ }	{ }	{ }	