


Non deterministic finite automata 

 Language accepted by a NFA 

 String accepted by Non Deterministic finite 

automata  

 



 An NFA is a five-tuple: 

 

 M = (Q, Σ, δ, q0, F) 

 

 Q A finite set of states 

 Σ A finite input alphabet 

 q0 The initial/starting state, q0 is in Q 

 F A set of final/accepting states, which is a subset of Q 

 δ A transition function, which is a total function from Q x Σ to 2Q 

 

  δ: (Q x Σ) –> 2Q -2Q is the power set of Q, the set of all subsets of Q 
 δ(q,s)  -The set of all states p such that there is a transition 

      labeled s from q to p 

  

 δ(q,s) is a function from Q x S to 2Q (but not to Q) 
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 Example #1: some 0’s followed by some 1’s 

 

 Q = {q0, q1, q2} 

 Σ = {0, 1} 

 Start state is q0 

 F = {q2} 

 

 δ:  0 1 

   q0 

 

   q1 

 

   q2 
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{q0, q1} {} 

{} {q1, q2} 

{q2} {q2} 

q1 q0 
q2 

0 1 

0 1 

0/1 



 Example #2: pair of 0’s or pair of 1’s 

 

 Q = {q0, q1, q2 , q3 , q4} 

 Σ = {0, 1} 

 Start state is q0 

 F = {q2, q4} 

 

 δ:  0 1 

  q0 

 

  q1 

 

  q2 

 

  q3 

 

  q4 
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{q0, q3} {q0, q1} 

{} {q2} 

{q2} {q2} 

{q4} {} 

{q4} {q4} 

q0 

0/1 

0 0 
q3 

q4 

0/1 

q1 
q2 

0/1 1 

1 



 

 Notes: 

 δ(q,s) may not be defined for some q and s (why?). 

 Informally, a string is said to be accepted if there exists a path to some 

state in F. 

 The language accepted by an NFA is the set of all accepted strings. 

 

 Question: How does an NFA find the correct/accepting path for a 

given string? 

 NFAs are a non-intuitive computing model. 

 We are primarily interested in NFAs as language defining devices, i.e., do 

NFAs accept languages that DFAs do not? 

 Other questions are secondary, including practical questions such as 

whether or not there is an algorithm for finding an accepting path through 

an NFA for a given string,  
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 Determining if a given NFA (example #2) accepts a given string (001) 

can be done algorithmically: 

 

 

 q0  q0  q0  q0 

 

   q3  q3  q1 

 

     q4  q4 accepted 

 

 

 

 Each level will have at most n states 
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0 0 1 



 

 Another example (010): 

 

 

 q0  q0  q0  q0 

 

   q3  q1  q3 

 

       not accepted 

 

 All paths have been explored, and none lead to an accepting state. 
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0 1 0 



 

 Question: Why non-determinism is useful? 

 

 Non-determinism  =  Backtracking 

 Non-determinism hides backtracking 

 Programming languages, e.g., Prolog, hides backtracking => Easy to 

program at a higher level: what we want to do, rather than how to do it 

 Useful in complexity study 

 

 Is NDA more “powerful” than DFA, i.e., accepts type of languages that any 

DFA cannot? 
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 Let Σ = {a, b, c}. Give an NFA M that accepts: 

 

  L = {x | x is in Σ* and x contains ab} 

 

 

 

 

 

 

 

  Is L a subset of L(M)? 

  Is L(M) a subset of L? 

 

 Is an NFA necessary? Could a DFA accept L? Try and give an equivalent 

DFA as an exercise. 

 Designing NFAs is not trivial: easy to create bug 
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q1 q0 
q2 

a 

a/b/c 

b 

a/b/c 



 Let Σ = {a, b}. Give an NFA M that accepts: 

 

  L = {x | x is in Σ* and the third to the last symbol in x is b} 

 

 

 

 

 

 

 

  Is L a subset of L(M)? 

  Is L(M) a subset of L? 

 

 Give an equivalent DFA as an exercise. 
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q1 q0 

b q3 
a/b 

a/b 

q2 

a/b 



 What we currently have: δ : (Q x Σ) –> 2Q 

 

 What we want (why?):  δ : (2Q x Σ*) –> 2Q 

 

 We will do this in two steps, which will be slightly different from the 

book, and we will make use of the following NFA. 

 

12 

q0 

0 1 
q1 

q4 q3 

0 1 

q2 

0 
0 

1 

0 

0 



 Step #1: 

 

 Given δ: (Q x Σ) –> 2Q define δ#: (2Q x Σ) –> 2Q as follows: 

 

 1) δ#(R, a) =     δ(q, a) for all subsets R of Q, and symbols a in Σ 

 

 Note that: 

 

  δ#({p},a) =     δ(q, a)  by definition of δ#, rule #1 above 

     = δ(p, a) 

 

 Hence, we can use δ for δ# 

 

  δ({q0, q2}, 0)  These now make sense, but previously 

  δ({q0, q1, q2}, 0)  they did not. 
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
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 Example: 

 

 δ({q0, q2}, 0) = δ(q0, 0) U δ(q2, 0) 

   = {q1, q3} U {q3, q4} 

   = {q1, q3, q4} 

 

 

 δ({q0, q1, q2}, 1) = δ(q0, 1) U δ(q1, 1) U δ(q2, 1) 

        = {} U {q2, q3} U {} 

        = {q2, q3} 
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 Step #2: 

 

 Given δ: (2Q x Σ) –> 2Q define δ^: (2Q x Σ*) –> 2Q as follows: 

 

 δ^(R,w) – The set of states M could be in after processing string w, having starting 
from any state in R. 

 

 Formally: 

 

  2) δ^(R, ε) = R   for any subset R of Q 

  3) δ^(R,wa) = δ (δ^(R,w), a)  for any w in Σ*, a in Σ, and 

       subset R of Q 

 Note that: 

 

  δ^(R, a) = δ(δ^(R, ε), a)  by definition of δ^, rule #3 above 

   = δ(R, a)  by definition of δ^, rule #2 above 

 

 Hence, we can use δ for δ^ 

 

  δ({q0, q2}, 0110)  These now make sense, but previously 

  δ({q0, q1, q2}, 101101) they did not. 

15 



 

 Example: 

 

 

 

 

 

 

 

 

 

 What is δ({q0}, 10)? 

 

 Informally: The set of states the NFA could be in after processing 10, 

 having started in state q0, i.e., {q1, q2, q3}. 

 

 Formally:  δ({q0}, 10) = δ(δ({q0}, 1), 0) 

      = δ({q0}, 0) 

      = {q1, q2, q3} 

 Is 10 accepted? Yes! 
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q0 

0 1 
q1 

q3 

0 1 

q2 

1 

1 0 



 

 Example: 

 

 What is δ({q0, q1}, 1)? 

 

 δ({q0 , q1}, 1) = δ({q0}, 1) U δ({q1}, 1)  

   = {q0} U {q2, q3} 

   = {q0, q2, q3} 

 

 

 What is δ({q0, q2}, 10)? 

 

 δ({q0 , q2}, 10) = δ(δ({q0 , q2}, 1), 0) 

   = δ(δ({q0}, 1) U δ({q2}, 1), 0) 

   = δ({q0} U {q3}, 0) 

   = δ({q0,q3}, 0) 

   = δ({q0}, 0) U δ({q3}, 0) 

   = {q1, q2, q3} U {} 

   = {q1, q2, q3} 
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 Example: 

 

 δ({q0}, 101) = δ(δ({q0}, 10), 1) 

   = δ(δ(δ({q0}, 1), 0), 1) 

   = δ(δ({q0}, 0), 1) 

   = δ({q1 , q2, q3}, 1) 

   = δ({q1}, 1) U δ({q2}, 1) U δ({q3}, 1)  

   = {q2, q3} U {q3} U {} 

   = {q2, q3} 

 

 Is 101 accepted? Yes! 
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 Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*.  Then w is 

accepted by M iff δ({q0}, w) contains at least one state in F.  

 

 Let  M = (Q, Σ, δ,q0,F)  be an NFA. Then the language accepted by M 

is the set: 

 

 L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in F}  

 

 Another equivalent definition: 

 

 L(M) = {w | w is in Σ* and w is accepted by M} 
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