


Non deterministic finite automata 

 Language accepted by a NFA 

 String accepted by Non Deterministic finite 

automata  

 



 An NFA is a five-tuple: 

 

 M = (Q, Σ, δ, q0, F) 

 

 Q A finite set of states 

 Σ A finite input alphabet 

 q0 The initial/starting state, q0 is in Q 

 F A set of final/accepting states, which is a subset of Q 

 δ A transition function, which is a total function from Q x Σ to 2Q 

 

  δ: (Q x Σ) –> 2Q -2Q is the power set of Q, the set of all subsets of Q 
 δ(q,s)  -The set of all states p such that there is a transition 

      labeled s from q to p 

  

 δ(q,s) is a function from Q x S to 2Q (but not to Q) 
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 Example #1: some 0’s followed by some 1’s 

 

 Q = {q0, q1, q2} 

 Σ = {0, 1} 

 Start state is q0 

 F = {q2} 

 

 δ:  0 1 

   q0 

 

   q1 

 

   q2 
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{q0, q1} {} 

{} {q1, q2} 

{q2} {q2} 

q1 q0 
q2 

0 1 

0 1 

0/1 



 Example #2: pair of 0’s or pair of 1’s 

 

 Q = {q0, q1, q2 , q3 , q4} 

 Σ = {0, 1} 

 Start state is q0 

 F = {q2, q4} 

 

 δ:  0 1 

  q0 

 

  q1 

 

  q2 

 

  q3 

 

  q4 
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{q0, q3} {q0, q1} 

{} {q2} 

{q2} {q2} 

{q4} {} 

{q4} {q4} 

q0 

0/1 

0 0 
q3 

q4 

0/1 

q1 
q2 

0/1 1 

1 



 

 Notes: 

 δ(q,s) may not be defined for some q and s (why?). 

 Informally, a string is said to be accepted if there exists a path to some 

state in F. 

 The language accepted by an NFA is the set of all accepted strings. 

 

 Question: How does an NFA find the correct/accepting path for a 

given string? 

 NFAs are a non-intuitive computing model. 

 We are primarily interested in NFAs as language defining devices, i.e., do 

NFAs accept languages that DFAs do not? 

 Other questions are secondary, including practical questions such as 

whether or not there is an algorithm for finding an accepting path through 

an NFA for a given string,  
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 Determining if a given NFA (example #2) accepts a given string (001) 

can be done algorithmically: 

 

 

 q0  q0  q0  q0 

 

   q3  q3  q1 

 

     q4  q4 accepted 

 

 

 

 Each level will have at most n states 
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0 0 1 



 

 Another example (010): 

 

 

 q0  q0  q0  q0 

 

   q3  q1  q3 

 

       not accepted 

 

 All paths have been explored, and none lead to an accepting state. 
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0 1 0 



 

 Question: Why non-determinism is useful? 

 

 Non-determinism  =  Backtracking 

 Non-determinism hides backtracking 

 Programming languages, e.g., Prolog, hides backtracking => Easy to 

program at a higher level: what we want to do, rather than how to do it 

 Useful in complexity study 

 

 Is NDA more “powerful” than DFA, i.e., accepts type of languages that any 

DFA cannot? 
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 Let Σ = {a, b, c}. Give an NFA M that accepts: 

 

  L = {x | x is in Σ* and x contains ab} 

 

 

 

 

 

 

 

  Is L a subset of L(M)? 

  Is L(M) a subset of L? 

 

 Is an NFA necessary? Could a DFA accept L? Try and give an equivalent 

DFA as an exercise. 

 Designing NFAs is not trivial: easy to create bug 
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q1 q0 
q2 

a 

a/b/c 

b 

a/b/c 



 Let Σ = {a, b}. Give an NFA M that accepts: 

 

  L = {x | x is in Σ* and the third to the last symbol in x is b} 

 

 

 

 

 

 

 

  Is L a subset of L(M)? 

  Is L(M) a subset of L? 

 

 Give an equivalent DFA as an exercise. 
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q1 q0 

b q3 
a/b 

a/b 

q2 

a/b 



 What we currently have: δ : (Q x Σ) –> 2Q 

 

 What we want (why?):  δ : (2Q x Σ*) –> 2Q 

 

 We will do this in two steps, which will be slightly different from the 

book, and we will make use of the following NFA. 
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q0 

0 1 
q1 

q4 q3 

0 1 

q2 

0 
0 

1 

0 

0 



 Step #1: 

 

 Given δ: (Q x Σ) –> 2Q define δ#: (2Q x Σ) –> 2Q as follows: 

 

 1) δ#(R, a) =     δ(q, a) for all subsets R of Q, and symbols a in Σ 

 

 Note that: 

 

  δ#({p},a) =     δ(q, a)  by definition of δ#, rule #1 above 

     = δ(p, a) 

 

 Hence, we can use δ for δ# 

 

  δ({q0, q2}, 0)  These now make sense, but previously 

  δ({q0, q1, q2}, 0)  they did not. 
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Rq


}{ pq



 

 Example: 

 

 δ({q0, q2}, 0) = δ(q0, 0) U δ(q2, 0) 

   = {q1, q3} U {q3, q4} 

   = {q1, q3, q4} 

 

 

 δ({q0, q1, q2}, 1) = δ(q0, 1) U δ(q1, 1) U δ(q2, 1) 

        = {} U {q2, q3} U {} 

        = {q2, q3} 
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 Step #2: 

 

 Given δ: (2Q x Σ) –> 2Q define δ^: (2Q x Σ*) –> 2Q as follows: 

 

 δ^(R,w) – The set of states M could be in after processing string w, having starting 
from any state in R. 

 

 Formally: 

 

  2) δ^(R, ε) = R   for any subset R of Q 

  3) δ^(R,wa) = δ (δ^(R,w), a)  for any w in Σ*, a in Σ, and 

       subset R of Q 

 Note that: 

 

  δ^(R, a) = δ(δ^(R, ε), a)  by definition of δ^, rule #3 above 

   = δ(R, a)  by definition of δ^, rule #2 above 

 

 Hence, we can use δ for δ^ 

 

  δ({q0, q2}, 0110)  These now make sense, but previously 

  δ({q0, q1, q2}, 101101) they did not. 
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 Example: 

 

 

 

 

 

 

 

 

 

 What is δ({q0}, 10)? 

 

 Informally: The set of states the NFA could be in after processing 10, 

 having started in state q0, i.e., {q1, q2, q3}. 

 

 Formally:  δ({q0}, 10) = δ(δ({q0}, 1), 0) 

      = δ({q0}, 0) 

      = {q1, q2, q3} 

 Is 10 accepted? Yes! 
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q0 

0 1 
q1 

q3 

0 1 

q2 

1 

1 0 



 

 Example: 

 

 What is δ({q0, q1}, 1)? 

 

 δ({q0 , q1}, 1) = δ({q0}, 1) U δ({q1}, 1)  

   = {q0} U {q2, q3} 

   = {q0, q2, q3} 

 

 

 What is δ({q0, q2}, 10)? 

 

 δ({q0 , q2}, 10) = δ(δ({q0 , q2}, 1), 0) 

   = δ(δ({q0}, 1) U δ({q2}, 1), 0) 

   = δ({q0} U {q3}, 0) 

   = δ({q0,q3}, 0) 

   = δ({q0}, 0) U δ({q3}, 0) 

   = {q1, q2, q3} U {} 

   = {q1, q2, q3} 
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 Example: 

 

 δ({q0}, 101) = δ(δ({q0}, 10), 1) 

   = δ(δ(δ({q0}, 1), 0), 1) 

   = δ(δ({q0}, 0), 1) 

   = δ({q1 , q2, q3}, 1) 

   = δ({q1}, 1) U δ({q2}, 1) U δ({q3}, 1)  

   = {q2, q3} U {q3} U {} 

   = {q2, q3} 

 

 Is 101 accepted? Yes! 
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 Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*.  Then w is 

accepted by M iff δ({q0}, w) contains at least one state in F.  

 

 Let  M = (Q, Σ, δ,q0,F)  be an NFA. Then the language accepted by M 

is the set: 

 

 L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in F}  

 

 Another equivalent definition: 

 

 L(M) = {w | w is in Σ* and w is accepted by M} 
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