

Non deterministic finite automata

 Language accepted by a NFA

 String accepted by Non Deterministic finite

automata

 An NFA is a five-tuple:

 M = (Q, Σ, δ, q0, F)

 Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ to 2Q

 δ: (Q x Σ) –> 2Q -2Q is the power set of Q, the set of all subsets of Q
 δ(q,s) -The set of all states p such that there is a transition

 labeled s from q to p

 δ(q,s) is a function from Q x S to 2Q (but not to Q)

3

 Example #1: some 0’s followed by some 1’s

 Q = {q0, q1, q2}

 Σ = {0, 1}

 Start state is q0

 F = {q2}

 δ: 0 1

 q0

 q1

 q2

4

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1 q0
q2

0 1

0 1

0/1

 Example #2: pair of 0’s or pair of 1’s

 Q = {q0, q1, q2 , q3 , q4}

 Σ = {0, 1}

 Start state is q0

 F = {q2, q4}

 δ: 0 1

 q0

 q1

 q2

 q3

 q4

5

{q0, q3} {q0, q1}

{} {q2}

{q2} {q2}

{q4} {}

{q4} {q4}

q0

0/1

0 0
q3

q4

0/1

q1
q2

0/1 1

1

 Notes:

 δ(q,s) may not be defined for some q and s (why?).

 Informally, a string is said to be accepted if there exists a path to some

state in F.

 The language accepted by an NFA is the set of all accepted strings.

 Question: How does an NFA find the correct/accepting path for a

given string?

 NFAs are a non-intuitive computing model.

 We are primarily interested in NFAs as language defining devices, i.e., do

NFAs accept languages that DFAs do not?

 Other questions are secondary, including practical questions such as

whether or not there is an algorithm for finding an accepting path through

an NFA for a given string,

6

 Determining if a given NFA (example #2) accepts a given string (001)

can be done algorithmically:

 q0 q0 q0 q0

 q3 q3 q1

 q4 q4 accepted

 Each level will have at most n states

7

0 0 1

 Another example (010):

 q0 q0 q0 q0

 q3 q1 q3

 not accepted

 All paths have been explored, and none lead to an accepting state.

8

0 1 0

 Question: Why non-determinism is useful?

 Non-determinism = Backtracking

 Non-determinism hides backtracking

 Programming languages, e.g., Prolog, hides backtracking => Easy to

program at a higher level: what we want to do, rather than how to do it

 Useful in complexity study

 Is NDA more “powerful” than DFA, i.e., accepts type of languages that any

DFA cannot?

9

 Let Σ = {a, b, c}. Give an NFA M that accepts:

 L = {x | x is in Σ* and x contains ab}

 Is L a subset of L(M)?

 Is L(M) a subset of L?

 Is an NFA necessary? Could a DFA accept L? Try and give an equivalent

DFA as an exercise.

 Designing NFAs is not trivial: easy to create bug

10

q1 q0
q2

a

a/b/c

b

a/b/c

 Let Σ = {a, b}. Give an NFA M that accepts:

 L = {x | x is in Σ* and the third to the last symbol in x is b}

 Is L a subset of L(M)?

 Is L(M) a subset of L?

 Give an equivalent DFA as an exercise.

11

q1 q0

b q3
a/b

a/b

q2

a/b

 What we currently have: δ : (Q x Σ) –> 2Q

 What we want (why?): δ : (2Q x Σ*) –> 2Q

 We will do this in two steps, which will be slightly different from the

book, and we will make use of the following NFA.

12

q0

0 1
q1

q4 q3

0 1

q2

0
0

1

0

0

 Step #1:

 Given δ: (Q x Σ) –> 2Q define δ#: (2Q x Σ) –> 2Q as follows:

 1) δ#(R, a) = δ(q, a) for all subsets R of Q, and symbols a in Σ

 Note that:

 δ#({p},a) = δ(q, a) by definition of δ#, rule #1 above

 = δ(p, a)

 Hence, we can use δ for δ#

 δ({q0, q2}, 0) These now make sense, but previously

 δ({q0, q1, q2}, 0) they did not.

13


Rq


}{ pq

 Example:

 δ({q0, q2}, 0) = δ(q0, 0) U δ(q2, 0)

 = {q1, q3} U {q3, q4}

 = {q1, q3, q4}

 δ({q0, q1, q2}, 1) = δ(q0, 1) U δ(q1, 1) U δ(q2, 1)

 = {} U {q2, q3} U {}

 = {q2, q3}

14

 Step #2:

 Given δ: (2Q x Σ) –> 2Q define δ^: (2Q x Σ*) –> 2Q as follows:

 δ^(R,w) – The set of states M could be in after processing string w, having starting
from any state in R.

 Formally:

 2) δ^(R, ε) = R for any subset R of Q

 3) δ^(R,wa) = δ (δ^(R,w), a) for any w in Σ*, a in Σ, and

 subset R of Q

 Note that:

 δ^(R, a) = δ(δ^(R, ε), a) by definition of δ^, rule #3 above

 = δ(R, a) by definition of δ^, rule #2 above

 Hence, we can use δ for δ^

 δ({q0, q2}, 0110) These now make sense, but previously

 δ({q0, q1, q2}, 101101) they did not.

15

 Example:

 What is δ({q0}, 10)?

 Informally: The set of states the NFA could be in after processing 10,

 having started in state q0, i.e., {q1, q2, q3}.

 Formally: δ({q0}, 10) = δ(δ({q0}, 1), 0)

 = δ({q0}, 0)

 = {q1, q2, q3}

 Is 10 accepted? Yes!

16

q0

0 1
q1

q3

0 1

q2

1

1 0

 Example:

 What is δ({q0, q1}, 1)?

 δ({q0 , q1}, 1) = δ({q0}, 1) U δ({q1}, 1)

 = {q0} U {q2, q3}

 = {q0, q2, q3}

 What is δ({q0, q2}, 10)?

 δ({q0 , q2}, 10) = δ(δ({q0 , q2}, 1), 0)

 = δ(δ({q0}, 1) U δ({q2}, 1), 0)

 = δ({q0} U {q3}, 0)

 = δ({q0,q3}, 0)

 = δ({q0}, 0) U δ({q3}, 0)

 = {q1, q2, q3} U {}

 = {q1, q2, q3}

17

 Example:

 δ({q0}, 101) = δ(δ({q0}, 10), 1)

 = δ(δ(δ({q0}, 1), 0), 1)

 = δ(δ({q0}, 0), 1)

 = δ({q1 , q2, q3}, 1)

 = δ({q1}, 1) U δ({q2}, 1) U δ({q3}, 1)

 = {q2, q3} U {q3} U {}

 = {q2, q3}

 Is 101 accepted? Yes!

18

 Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*. Then w is

accepted by M iff δ({q0}, w) contains at least one state in F.

 Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language accepted by M

is the set:

 L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in F}

 Another equivalent definition:

 L(M) = {w | w is in Σ* and w is accepted by M}

19

