COURSE: THEORY OF AUTOMATA COMPUTATION

IOPICS TO BE COVERED

- Non deterministic finite automata
- Language accepted by a NFA
- String accepted by Non Deterministic finite automata

NONDETERMANISTIIC FINITE STATE AUTOMATA (NFA)

- An NFA is a five-tuple:
$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q A finite set of states
$\Sigma \quad$ A finite input alphabet
$\mathrm{q}_{0} \quad$ The initial/starting state, q_{0} is in Q
F A set of final/accepting states, which is a subset of Q
$\delta \quad$ A transition function, which is a total function from $\mathrm{Q} \times \Sigma$ to 2^{Q}
$\delta:(Q \times \Sigma) \rightarrow 2^{Q} \quad-2^{Q}$ is the power set of Q, the set of all subsets of Q
$\delta(q, s)$ -The set of all states p such that there is a transition labeled s from q to p
$\delta(\mathrm{q}, \mathrm{s})$ is a function from $\mathrm{Q} \times \mathrm{S}$ to 2^{Q} (but not to Q)
- Example \#1: some 0's followed by some 1's
$\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\Sigma=\{0,1\}$
Start state is q_{0}

$\mathrm{F}=\left\{\mathrm{q}_{2}\right\}$
$\delta:$

q_{0}	$\left\{q_{0}, q_{1}\right\}$	$\}$
	$\}$	$\left\{q_{1}, q_{2}\right\}$
q_{1}	$\left\{q_{1}\right.$	
	$\left\{q_{2}\right\}$	$\left\{q_{2}\right\}$

- Example \#2: pair of 0's or pair of 1's
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ $\Sigma=\{0,1\}$
Start state is q_{0} $\mathrm{F}=\left\{\mathrm{q}_{2}, \mathrm{q}_{4}\right\}$
$\delta:$

	$0 \quad 1$	
q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{3}\right\}$	$\left\{q_{0}, \mathrm{q}_{1}\right\}$
q_{1}	\{\}	$\left\{\mathrm{q}_{2}\right\}$
q_{2}	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
q_{3}	$\left\{\mathrm{q}_{4}\right\}$	\{\}
q_{4}	$\left\{q_{4}\right\}$	$\left\{q_{4}\right\}$

- Notes:

- $\delta(q, s)$ may not be defined for some q and s (why?).
- Informally, a string is said to be accepted if there exists a path to some state in F.
- The language accepted by an NFA is the set of all accepted strings.
- Question: How does an NFA find the correct/accepting path for a given string?
- NFAs are a non-intuitive computing model.
- We are primarily interested in NFAs as language defining devices, i.e., do NFAs accept languages that DFAs do not?
- Other questions are secondary, including practical questions such as whether or not there is an algorithm for finding an accepting path throug an NFA for a given string,
- Determining if a given NFA (example \#2) accepts a given string (001) can be done algorithmically:

- Each level will have at most n states
- Another example (010):

not accepted
- All paths have been explored, and none lead to an accepting state.
- Question: Why non-determinism is useful?
- Non-determinism = Backtracking
- Non-determinism hides backtracking
- Programming languages, e.g., Prolog, hides backtracking => Easy to program at a higher level: what we want to do, rather than how to do it
- Useful in complexity study
- Is NDA more "powerful" than DFA, i.e., accepts type of languages that an DFA cannot?
- Let $\Sigma=\{a, b, c\}$. Give an NFA M that accepts:

$$
L=\left\{x \mid x \text { is in } \Sigma^{*} \text { and } x \text { contains } a b\right\}
$$

Is L a subset of $L(M)$?
Is $L(M)$ a subset of L ?

- Is an NFA necessary? Could a DFA accept L? Try and give an equivalent DFA as an exercise.
- Designing NFAs is not trivial: easy to create bug
- Let $\Sigma=\{a, b\}$. Give an NFA M that accepts:
$\mathrm{L}=\left\{\mathrm{x} \mid \mathrm{x}\right.$ is in Σ^{*} and the third to the last symbol in x is b$\}$

Is L a subset of $L(M)$?
Is $L(M)$ a subset of L ?

- Give an equivalent DFA as an exercise.

EXTENSION OF \triangle TO STRINGS AND SETS OF

- What we currently have:
$\delta:(\mathrm{Q} \times \Sigma)-2^{\mathrm{Q}}$
- What we want (why?):
- We will do this in two steps, which will be slightly different from the book, and we will make use of the following NFA.

EXTENSION OF \triangle TO STRINGS AND SETS OF

STATES

- Step \#1:

Given $\delta:(Q \times \Sigma) \rightarrow 2^{Q}$ define $\delta^{\#}:\left(2^{Q} \times \Sigma\right) \rightarrow 2^{Q}$ as follows:

1) $\delta^{\#}(R, a)=\bigcup_{q \in R} \delta(q, a)$ for all subsets R of Q, and symbols a in Σ

- Note that:

$$
\begin{aligned}
\delta^{\#}(\{p\}, a) & =\bigcup_{q \in \perp \delta(q, a)} \\
& =\delta(p, a)
\end{aligned}
$$

- Hence, we can use δ for $\delta^{\#}$

$$
\begin{aligned}
& \delta\left(\left\{q_{0}, q_{2}\right\}, 0\right) \\
& \delta\left(\left\{q_{0}, q_{1}, q_{2}\right\}, 0\right)
\end{aligned}
$$

These now make sense, but previously they did not.

- Example:

$$
\begin{aligned}
\delta\left(\left\{q_{0}, q_{2}\right\}, 0\right) & =\delta\left(q_{0}, 0\right) \cup \delta\left(q_{2}, 0\right) \\
& =\left\{q_{1}, q_{3}\right\} \cup\left\{q_{3}, q_{4}\right\} \\
& =\left\{q_{1}, q_{3}, q_{4}\right\}
\end{aligned}
$$

$\delta\left(\left\{q_{0}, q_{1}, q_{2}\right\}, 1\right)=\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right) \cup \delta\left(q_{2}, 1\right)$

$$
\begin{aligned}
& =\{ \} \cup\left\{q_{2}, q_{3}\right\} \cup\{ \} \\
& =\left\{q_{2}, q_{3}\right\}
\end{aligned}
$$

- Step \#2:

Given $\delta:\left(2^{Q} \times \Sigma\right)-2^{Q}$ define $\delta^{\wedge}:\left(2^{Q} \times \Sigma^{*}\right)->2^{Q}$ as follows:
$\delta^{\wedge}(R, w)$ - The set of states M could be in after processing string w, having startir from any state in R.

Formally:

$$
\begin{aligned}
& \text { 2) } \delta^{\wedge}(R, \varepsilon)=R \\
& \text { 3) } \delta^{\wedge}(R, w a)=\delta\left(\delta^{\wedge}(R, w), a\right)
\end{aligned}
$$

for any subset R of Q
for any w in Σ^{*}, a in Σ, and subset R of Q

- Note that:

$$
\begin{aligned}
\delta^{\wedge}(R, a) & =\delta\left(\delta^{\wedge}(R, \varepsilon),\right. \text { a) } & & \text { by definition of } \delta^{\wedge}, \text { rule \#3 above } \\
& =\delta(R, a) & & \text { by definition of } \delta^{\wedge}, \text { rule \#2 above }
\end{aligned}
$$

- Hence, we can use δ for δ^{\wedge}

$$
\begin{aligned}
& \delta\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}, 0110\right) \\
& \delta\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}, 101101\right)
\end{aligned}
$$

These now make sense, but previously they did not.

- Example:

What is $\delta\left(\left\{q_{0}\right\}, 10\right)$?
Informally: The set of states the NFA could be in after processing 10, having started in state q_{0}, i.e., $\left\{q_{1}, q_{2}, q_{3}\right\}$.

Formally: $\quad \delta\left(\left\{q_{0}\right\}, 10\right)=\delta\left(\delta\left(\left\{q_{0}\right\}, 1\right), 0\right)$

$$
=\delta\left(\left\{q_{0}\right\}, 0\right)
$$

$$
=\left\{q_{1}, q_{2}, q_{3}\right\}
$$

Is 10 accepted? Yes!

- Example:

What is $\delta\left(\left\{q_{0}, q_{1}\right\}, 1\right)$?

$$
\begin{aligned}
\delta\left(\left\{q_{0}, q_{1}\right\}, 1\right) & =\delta\left(\left\{q_{0}\right\}, 1\right) \cup \delta\left(\left\{q_{1}\right\}, 1\right) \\
& =\left\{q_{0}\right\} \cup\left\{q_{2}, q_{3}\right\} \\
& =\left\{q_{0}, q_{2}, q_{3}\right\}
\end{aligned}
$$

What is $\delta\left(\left\{q_{0}, q_{2}\right\}, 10\right)$?

$$
\begin{aligned}
\delta\left(\left\{q_{0}, q_{2}\right\}, 10\right) & =\delta\left(\delta\left(\left\{q_{0}, q_{2}\right\}, 1\right), 0\right) \\
& =\delta\left(\delta\left(\left\{q_{0}\right\}, 1\right) \cup \delta\left(\left\{q_{2}\right\}, 1\right), 0\right) \\
& =\delta\left(\left\{q_{0}\right\} \cup\left\{q_{3}\right\}, 0\right) \\
& =\delta\left(\left\{q_{0}, q_{3}\right\}, 0\right) \\
& =\delta\left(\left\{q_{0}\right\}, 0\right) \cup \delta\left(\left\{q_{3}\right\}, 0\right) \\
& =\left\{q_{1}, q_{2}, q_{3}\right\} \cup\{ \} \\
& =\left\{q_{1}, q_{2}, q_{3}\right\}
\end{aligned}
$$

- Example:

$$
\begin{aligned}
\delta\left(\left\{q_{0}\right\}, 101\right) & =\delta\left(\delta\left(\left\{q_{0}\right\}, 10\right), 1\right) \\
& =\delta\left(\delta\left(\delta\left(\left\{q_{0}\right\}, 1\right), 0\right), 1\right) \\
& =\delta\left(\delta\left(\left\{q_{0}\right\}, 0\right), 1\right) \\
& =\delta\left(\left\{q_{1}, q_{2}, q_{3}\right\}, 1\right) \\
& =\delta\left(\left\{q_{1}\right\}, 1\right) \cup \delta\left(\left\{q_{2}\right\}, 1\right) \cup \delta\left(\left\{q_{3}\right\}, 1\right) \\
& =\left\{q_{2}, q_{3}\right\} \cup\left\{q_{3}\right\} \cup\{ \} \\
& =\left\{q_{2}, q_{3}\right\}
\end{aligned}
$$

Is 101 accepted? Yes!

DEFINITIONS FOR NFAS

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA and let w be in Σ^{*}. Then w is accepted by M iff $\delta\left(\left\{q_{0}\right\}\right.$, w) contains at least one state in F.
- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA. Then the language accepted by M is the set:
$L(M)=\left\{w \mid w\right.$ is in Σ^{*} and $\delta\left(\left\{q_{0}\right\}, w\right)$ contains at least one state in $\left.F\right\}$
- Another equivalent definition:
$L(M)=\left\{w \mid w\right.$ is in Σ^{*} and w is accepted by $\left.M\right\}$

