

 Finite automata and regular sets

Definition of deterministic finite automata

 String accepted by DFA

 ……..

 One-way, infinite tape, broken into cells

 One-way, read-only tape head.

 Finite control, I.e., a program, containing the position of the read
head, current symbol being scanned, and the current “state.”

 A string is placed on the tape, read head is positioned at the left
end, and the DFA will read the string one symbol at a time until all
symbols have been read. The DFA will then either accept or reject.

3

Finite

Control

0 1 1 0 0

 The finite control can be described by a transition diagram:

 Example #1:

 1 0 0 1 1

 q0 q0 q1 q0 q0 q0

 One state is final/accepting, all others are rejecting.

 The above DFA accepts those strings that contain an even number of
0’s

4

q0
q1

0

0

1

1

 Example #2:

 a c c c b accepted

 q0 q0 q1 q2 q2 q2

 a a c rejected

 q0 q0 q0 q1

 Accepts those strings that contain at least two c’s

5

q1 q0
q2

a

b

a

b

c c

a/b/c

6

Inductive Proof (sketch):

Base: x a string with |x|=0. state will be q0 => rejected.

Inductive hypothesis: |x|=k, rejected -in state q0 (x must have 0 c),

 OR, rejected – in state q1 (x must have 1 c),

 OR, accepted – in state q2 (x already with 2 c’s)

Inductive step: String xp, for p = a, b and c

 q0 and, xa or xb: q0->q0 rejected, as should be (no c)

 q0 and, xc: q0 -> q1 rejected, as should be (1 c)

 q1 and xa or xb: q1 -> q1 rejected, …

 q1 and xc: q1-> q2 accepted, as should be (2 c’s now)

 q2 and xa, or xb, or xc: q2 -> q2 accepted, (no change in c)

 A DFA is a five-tuple:

 M = (Q, Σ, δ, q0, F)

 Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ to Q

 δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ, and

 δ(q,s) = q’ is equal to some state q’ in Q, could be q’=q

 Intuitively, δ(q,s) is the state entered by M after reading symbol s while in
state q.

7

 For example #1:

 Q = {q0, q1}

 Σ = {0, 1}

 Start state is q0

 F = {q0}

 δ:

 0 1

 q0 q1 q0

 q1 q0 q1

8

q0
q1

0

0

1

1

 For example #2:

 Q = {q0, q1, q2}

 Σ = {a, b, c}

 Start state is q0

 F = {q2}

 δ: a b c

 q0 q0 q0 q1

 q1 q1 q1 q2

 q2 q2 q2 q2

 Since δ is a function, at each step M has exactly one option.

 It follows that for a given string, there is exactly one computation.

9

q1 q0
q2

a

b

a

b

c c

a/b/c

δ^ : (Q x Σ*) –> Q

δ^(q,w) – The state entered after reading string w having started in

state q.

Formally:

 1) δ^(q, ε) = q, and

 2) For all w in Σ* and a in Σ

 δ^(q,wa) = δ (δ^(q,w), a)

10

 Recall Example #1:

 What is δ^(q0, 011)? Informally, it is the state entered by M after

processing 011 having started in state q0.

 Formally:

 δ^(q0, 011) = δ (δ^(q0,01), 1) by rule #2

 = δ (δ (δ^(q0,0), 1), 1) by rule #2

 = δ (δ (δ (δ^(q0, λ), 0), 1), 1) by rule #2

 = δ (δ (δ(q0,0), 1), 1) by rule #1

 = δ (δ (q1, 1), 1) by definition of
δ

 = δ (q1, 1) by definition of δ

 = q1 by definition of δ

 Is 011 accepted? No, since δ^(q0, 011) = q1 is not a final state.

11

q0
q1

0

0

1

1

 Note that:

 δ^ (q,a) = δ(δ^(q, ε), a) by definition of δ^, rule
#2

 = δ(q, a) by definition of δ^, rule
#1

 Therefore:

 δ^ (q, a1a2…an) = δ(δ(…δ(δ(q, a1), a2)…), an)

 Hence, we can use δ in place of δ^:

 δ^(q, a1a2…an) = δ(q, a1a2…an)

12

 Recall Example #2:

 What is δ(q0, 011)? Informally, it is the state entered by M after
processing 011 having started in state q0.

 Formally:

 δ(q0, 011) = δ (δ(q0,01), 1) by rule #2

 = δ (δ (δ(q0,0), 1), 1) by rule #2

 = δ (δ (q1, 1), 1) by definition of
δ

 = δ (q1, 1) by definition of δ

 = q1 by definition of δ

 Is 011 accepted? No, since δ(q0, 011) = q1 is not a final state.

13

q1 q0
q2

1 1

0
0

1

0

 Recall Example #2:

 What is δ(q1, 10)?

 δ(q1, 10) = δ (δ(q1,1), 0) by rule #2

 = δ (q1, 0) by definition of δ

 = q2 by definition of δ

 Is 10 accepted? No, since δ(q0, 10) = q1 is not a final state. The fact

that δ(q1, 10) = q2 is irrelevant!

14

0

q1 q0
q2

1 1

0

1

0

 Let M = (Q, Σ, δ,q0,F) be a DFA and let w be in Σ*. Then w is accepted by M
iff δ(q0,w) = p for some state p in F.

 Let M = (Q, Σ, δ,q0,F) be a DFA. Then the language accepted by M is the set:

 L(M) = {w | w is in Σ* and δ(q0,w) is in F}

 Another equivalent definition:

 L(M) = {w | w is in Σ* and w is accepted by M}

 Let L be a language. Then L is a regular language iff there exists a DFA M
such that L = L(M).

 Let M1 = (Q1, Σ1, δ1, q0, F1) and M2 = (Q2, Σ2, δ2, p0, F2) be DFAs. Then M1
and M2 are equivalent iff L(M1) = L(M2).

15

 Notes:

 A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and

 Σ* - L(M).

 If L = L(M) then L is a subset of L(M) and L(M) is a subset of L.

 Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a subset of
L(M1).

 Some languages are regular, others are not. For example, if

 L1 = {x | x is a string of 0's and 1's containing an even
 number of 1's} and

 L2 = {x | x = 0n1n for some n >= 0}

 then L1 is regular but L2 is not.

 Questions:

 How do we determine whether or not a given language is regular?

 How could a program “simulate” a DFA?

16

 Give a DFA M such that:

 L(M) = {x | x is a string of 0’s and 1’s and |x| >= 2}

Prove this by induction

17

q1 q0
q2

0/1

0/1

0/1

 Give a DFA M such that:

 L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s such

 that x does not contain the substring aa}

18

q2 q0

a

a/b/c

a
q1

b/c

b/c

 Give a DFA M such that:

 L(M) = {x | x is a string of a’s, b’s and c’s such that x

 contains the substring aba}

19

q2 q0

a

a/b/c

b
q1

c

b/c a

b/c

q3

a

 Give a DFA M such that:

 L(M) = {x | x is a string of a’s and b’s such that x

 contains both aa and bb}

20

q0

b

q7

q5 q4 q6

b

b

b

a

q2 q1 q3

a

a

a

b

a/b b

a

a

a b

 Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+.

 For {}: For {ε}:

 For Σ*: For Σ+:

21

0/1

q0

0/1

q0

q1 q0

0/1

0/1

0/1
q0 q1

0/1

Issue: what languages can be accepted by finite

automata ?

 Recall the definitions of some language operations:

◦ A U B = {x | x A or x B}.

◦ A B = {x | x A /\ x B}

◦ ~A = S* - A = {x S* | x A}

◦ AB = {xy | x A /\ y B}

◦ A* = {x1 x2 ...xn | n 0 /\ xi A for 0 i n}

◦ and more ... ex: A / B = {x | $y B s.t. xy A }.

 Problem: If A and B are regular [languages], then

which of the above sets are regular as well?

Ans: ______.

 M1 = (Q1,S,d1,s1,F1), M2 = (Q2,S,d2,s2,F2) : two DFAs

 Define a new machine M3 = (Q3, S, d3, s3, F3) where
◦ Q3 = Q1 x Q2 = {(q1,q2) | q1 Q1 and q2 Q2 }

◦ s3 = (s1,s2);

◦ F3=F1xF2 = {(q1,q2) | q1 F1 /\ q2 F2} and

◦ d3:Q3 x S --> Q3 is defined to be

 d3((q1,q2), a) = (d1 (q1,a), d2 (q2,a))

 for all (q1,q2)Q, a S.

 The machine M3, denoted M1xM2, is called the product of
M1 and M2. The behavior of M3 may be viewed as the
parallel execution of M1 and M2.

 Lem 4.1: For all x S*, D3((p,q),x) = (D1(p,x), D2(q,x)).

Pf: By induction on the length |x| of x.

 Basis: |x|= 0: then D3((p,q),e) = (p,q) = (D1 (p,e), D2(q,e))

Ind. step: assume the lemma hold for x in S*, we show it holds for
xa, where a in S.

 D3((p,q),xa) = d3(D3((p,q),x), a) --- definition of D3
 = d3((D1(p,x), D2 (q,x)), a) --- Ind. hyp.
 = (d1(D1(p,x),a), d2(D2 (q,x),a) --- def. of d3
 = (D1(p,xa), D2(p,xa)) QED --- def of D1 and D2.
Theorem 4.2: L(M3) = L(M1) L(M2).
pf: for all x S*, x L(M3)
 iff D3(s3,x) F3 --- def. of

acceptance
 iff D3((s1,s2),x) F3 --- def. of s3
 iff (D1(s1,x), D2(s2,x)) F3 = F1xF2 --- def. of F3
 iff D1(s1,x) F1 and D2(s2,x) F2 --- def. of set product
 iff x L(M1) and x L(M2) --- def. of acceptance
 iff x L(M1) L(M2). QED --- def. of intersection.

Theorem: IF A and B are regular than so are AB, ~A and
AUB.

pf: (1) A and B are regular
 => $ DFA M1 and M2 s.t. L(M1) = A and L(M2) = B -- def. of RL
 => L(M1xM2) = L(M1) L(M2) = A B --- Theorem 4.2
 ==> A B is regular. -- def. of RL.
 (2) Let M = (Q,S,d,s,F) be the machine s.t. L(M) = A.
 Define M' = (Q,S,d,s,F') where F' = ~F = {q Q | q F}.
 Now for all x in S*, x L(M')
 <=> D(s,x) F' = ~F --- def. of acceptance
 <=> D(s,x) F --- def of ~F
 <=> x L(M) iff x A. -- def. of acceptance
 Hence ~A is accepted by L(M') and is regular !
(3). Note that AUB = ~(~A ~B). Hence the fact that A and B

are regular implies ~A, ~B, (~A ~B) and ~(~A ~B) = AUB
are regular too.

