COURSE:
THEORY OF

AUTOMATA
COMPUTATION

TOPICS TO BE COVERED

® Finite automata and regular sets
@ Definition of deterministic finite automata
® String accepted by DFA

DETERMINISTIC FINITE STATE AUTOMATA (DIFA)

11010

@ One-way, infinite tape, broken into cells
® One-way, read-only tape head.

@ Finite control, l.e., a program, containing the position of the read
head, current symbol being scanned, and the current “state.”

@ Astring is placed on the tape, read head is positioned at the left
end, and the DFA will read the string one symbol at a time until all
symbols have been read. The DFA will then either accept or reject.

3

@ The finite control can be described by a transition diagram:

® Example #1:

1
0
o ())
0
1 0 0 1 1
o do g, Jo Jo do

@ One state is final/accepting, all others are rejecting.

@ The above DFA accepts those strings that contain an even number o
0’s

® Example #2:

a 3 a/b/c

WL G W ©

b b

a C C C b accepted
do Jdo g, d, d, d,

a a C rejected

o o Jo d4

@ Accepts those strings that contain at least two c’s

o1

Inductive Proof (sketch):
Base: x a string with |x|=0. state will be g0 => rejected.

Inductive hypothesis: [x|=K, rejected -in state g0 (x must have 0 c),
OR, rejected — in state g1 (x must have 1 c),
OR, accepted — in state g2 (x already with 2 c’s)

Inductive step: String xp, forp=a,band c
g0 and, xa or xb: g0->q0 rejected, as should be (no c)
g0 and, xc: g0 -> g1 rejected, as should be (1 c)
gl and xa or xb: g1 -> ql rejected, ...
gl and xc: ql-> g2 accepted, as should be (2 ¢’s now)
g2 and xa, or xb, or xc: g2 -> g2 accepted, (no change in c)

FORMAL DEFINITION OFF A DIFA

@ ADFA s a five-tuple:

M = (Q} z) 67 qO) F)

Q A finite set of states

2 A finite input alphabet

do The initial/starting state, q, is in Q

F A set of final/accepting states, which is a subset of Q

o] A transition function, which is a total function from Q x 2 to Q

0: (Qx2)--Q 0 is defined for any q in Q and s in X, and
o(q,s) = q’ is equal to some state q’ in Q, could be q’=q

Intuitively, 6(q,s) is the state entered by M after reading symbol s while in
state q.

@ For example #1:

1
Q = {qO) q1}
2 =1{0, 1}
Start state is q,)
F = {do}
0:
O 1
do of Yo

q1 qu ql

® For example #2:

a
Q = {qO) q1) qZ} /a\
2 ={a, b, ¢} C N c ‘
Start state is qq o @
F =
{9,} 0 h

0: a b C

do S 5) S 5) o p

g, d; d; d,

d; d; d; d;

@ Since 0 is a function, at each step M has exactly one option.
@ It follows that for a given string, there is exactly one computation.

EXTENSION OF A TO STRINGS

0 :(Qx%)--Q

0°(q,w) - The state entered after reading string w having started in
state q.

Formally:

1) 6°(q, €) = q, and
2) ForallwinX andain 2
6°(q,wa) =06 (6°(q,w), a)

10

@ Recall Example #1: 1

0

0

© What is 6°(qy, 011)? Informally, it is the state entered by M after
processing 011 having started in state q,

® Formally:

0°(qg, 011) =0 (6°(qy,01), 1) by rule #2
=0 (0 (0°(qy,0), 1), 1) by rule #2
=0 (0 (6 (6°(dg, N), 0), 1), 1) by rule #2
=0 (0 (0(qy,0), 1), 1) by rule #1

5 =0 (0(qq, 1), 1) by definition
=0(qq, 1) by definition of 0
= qq by definition of 0

@ Is 011 accepted? No, since §°(q,, 011) = g, is not a final state.
11

® Note that:

0" (q,a) =0(0°(q, €), a) by definition of &", ru

#2
= 0(q, a) by definition of &", ru

#1

® Therefore:

d" (q, a,a,...a,) = 6(6(...0(8(q, a1), a2)...), a,)

@ Hence, we can use 0 in place of §":

5'(q, aj3g-ay) = 6(q, aj3g.-.ay)

12

@ Recall Example #2:

1 1 1
s [N 0
0
® What is 0(qy, 011)? Informally, it is the state entered by M after
processing 011 having started in state q,
® Formally:
0(qy, 011) =0 (0(qy,01), 1) by rule #2
=0 (0 (0(qy,0), 1), 1) by rule #2
=0 (0(qq, 1), 1) by definition
0
=0(qq, 1) by definition of 0
=g, by definition of 0

@ Is 011 accepted? No, since 0(qy, 011) = g, is not a final state.

13

@ Recall Example #2:

1 1
A
® What is 0(q,, 10)?
d(a;, 10) =3 (3(qy,1), 0) by rule #2
=0 (q4, 0) by definition of &
=q, by definition of &

@ Is 10 accepted? No, since 0(qy, 10) = g, is not a final state. The fact
that 6(q,, 10) = q, is irrelevant!

14

DEFINITIONS FOR DFAS

© Let M =(Q, %, 9,q,,F) be a DFA and let w be in 2. Then w is accepted by
iff 0(qq,W) = p for some state pinF

® Let M=(Q, 2, 0,q,,F) be a DFA. Then the language accepted by M is the s
L(M) ={w | wisin X" and 6(q,,w) is in F}

@ Another equivalent definition:
L(M) ={w | wisin X" and w is accepted by M}

@ Let L be alanguage. Then L is a regular language iff there exists a DFA
such that L = L(M).

© Let My=(Q, 2, 04, qo, Fy) and M, = (Q,, Z,, 0,, py, F,) be DFAs. Then M,
and M, are equrvalent iff L(1) = (M).

15

@ Notes:
ADFAM = (Q, 2, 9,q,,F) partitions the set X" into two sets: L(M) and
2 - L(M).
If L=L(M) then L is a subset of L(M) and L(M) is a subset of L.

Similarly, if L(M,) = L(M,) then L(M,) is a subset of L(M,) and L(M,) is a subset of
L(M).

Some languages are regular, others are not. For example, if

L, = {x | xis a string of 0's and 1's containing an even
number of 1's} and

L, ={x | x=0™" for some n >= 0}
then L, is regular but L, is not.

® Questions:
How do we determine whether or not a given language is regular?
How could a program “simulate” a DFA?

16

® Give a DFA M such that:

L(M) = {x | xis astring of 0’s and 1’s and | x| >= 2}

0/1

0/1

A 4

0/1
Jo

Prove this by induction

17

® Give a DFA M such that:

L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s such
that x does not contain the substring aa}

b/c a/bl/c

18

® Give a DFA M such that:

L(M) = {x | x is a string of a’s, b’s and c’s such that x
contains the substring aba}

b/c a a/b/c

19

® Give a DFA M such that:

L(M) = {x | xis a string of a’s and b’s such that x
contains both aa and bb}

d4 '@ . Js

20

@ Let 2 = {0, 13}. Give DFAs for {}, {€}, 2°, and 2".

For {3: For {€}:
0/1

ey —®

For X": For X*:

-
—(©) —(w

SOME CLOSURE PROPERTIES OF
REGULAR SETS

Issue: what languages can be accepted by finite
automata ?

« Recall the definitions of some language operations:
AUB={x| x e Aor x € B}.
AnB={x|xeA/\x e B}
~A=2*-A={x e X | Xx g A}

AB={xy | x e A/\y e B}
A*={X; X, ...x, | n>0/\x, e Afor 0<i<n}
and more ...ex:A/B={x| 3y e Bs.t. xy e A}.

« Problem: If Aand B are regular [languages], then
which of the above sets are regular as well?

Ans:

THE PRODUCT CONSTRUCTION

o M= (Q,2,84,51,F4), My =1(Qy,%,8;,s,,F;) : two DFAs
Define a new machine M; = (Q;, %, 35, S5, F3) where

Q=Q xQ=1{(q,9;) 1 4 € @ andq, € Q, }

S3 = (51)52);

Fy=FxF, ={(a,,9,) | 9, € F; /\ g, € F;} and

0;:Q; X X --> Q; is defined to be

83((q1)q2)’ a) - (61 (q1)a); 62 (qZ)a))
for all (q4,9,)€Q, a € X.

« The machine M;, denoted M,xM,, is called the product of
M, and M,. The behavior of M; may be viewed as the
parallel execution of M; and M,.

« Lem 4.1: For all x € £*%, A;((p,q),X) = (A{(p,X), Ay(q,X)).
Pf: By induction on the length [x]| of x.

BaSiS: |X|= O: then A3((p,q))8) = (p)q) = (A1 (p,S), AZ(qag))

THE PRODUCT CONSTRUCTION
(CONT'D)

Ind. step: assume the lemma hold for x in Z*, we show it holds for
Xa, W ere a in .

A3((p,q),xa) = 35(As((P,q),X), a) --- definition of A;
= 03((A¢(P,X), Az (q,X)), Q) --- Ind. hyp.
= (64(A (X),a), 8,(A, (q,x),a) --- def. of 3,
= (A(p,) A,(p,xa)) QED --- def of A, and A,.

Theorem 4.2: L(M;) = L(M;) N L(M,).
pf: for all x € £*, x € L(M;)

iff Az(S3,X) € F3 --- def. of
acceptance

iff (A;(Sq,X), Az(sz,x)) e F;=F,xF2 --- def. of F,

iff A,(s{,x) € F, and A,(s,,x) € F, --- def. of set product
iff x e L(M;) and x € L(M,) --- def. of acceptance
iff x € L(M;) nL(M,). QED --- def. of intersection.

REGULAR LANGUAGES ARE CLOSED
UNDER U, n AND -~

ThAGl(J)Igem: IF A and B are regular than so are AnB, ~A and

pf: (1) Aand B are regular
=> 3 DFAM, and M, s.t. L(M,) = A and L(M,) = B -- def. of RL
=> L(M;xM,) = L(M;) " L(M,) =An B --- Theorem 4.2

==> A N B is regular. -- def. of RL.

(2) Let M = (Q,%,9,s,F) be the machine s.t. L(M) = A.
Define M' = (Q,X%,9,s,F) whereFF=~F={q € Q| q ¢ F}.
Now for all x in ¥, x € L(M)

<=> A(s,x) € F' = ~F --- def. of acceptance
<=> A(s,X) ¢ F --- def of ~F
<=> X ¢ L(M) iff x ¢ A. -- def. of acceptance

Hence ~A is accepted by L(M’) and is regular !

(3). Note that AUB = ~(~A ~Be. Hence the fact that Aand B
are regular implies ~A, ~B, (~A n~B) and ~(~An ~B) = AUB
are regular too.

