COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

• Finite automata and regular sets

Definition of deterministic finite automata

String accepted by DFA

DETERMINISTIC FINITE STATE AUTOMATA (DFA)

- One-way, infinite tape, broken into cells
- One-way, read-only tape head.
- Finite control, I.e., a program, containing the position of the read head, current symbol being scanned, and the current "state."
- A string is placed on the tape, read head is positioned at the left end, and the DFA will read the string one symbol at a time until all symbols have been read. The DFA will then either accept or reject.

- The finite control can be described by a <u>transition diagram</u>:
- Example #1:

- One state is final/accepting, all others are rejecting.
- The above DFA accepts those strings that contain an even number of 0's

• Example #2:

• Accepts those strings that contain <u>at least</u> two c's

Inductive Proof (sketch):

Base: x a string with |x|=0. state will be q0 => rejected.

```
Inductive hypothesis: |x|=k, rejected -in state q0 (x must have 0 c),
OR, rejected – in state q1 (x must have 1 c),
OR, accepted – in state q2 (x already with 2 c's)
```

```
Inductive step: String xp, for p = a, b and c

q0 and, xa or xb: q0->q0 rejected, as should be (no c)

q0 and, xc: q0 -> q1 rejected, as should be (1 c)

q1 and xa or xb: q1 -> q1 rejected, ...

q1 and xc: q1-> q2 accepted, as should be (2 c's now)

q2 and xa, or xb, or xc: q2 -> q2 accepted, (no change in c)
```

FORMAL DEFINITION OF A DFA

- A DFA is a five-tuple:
 - $M = (Q, \Sigma, \delta, q_0, F)$
 - Q A <u>finite</u> set of states
 - Σ A <u>finite</u> input alphabet
 - q_0 The initial/starting state, q_0 is in Q
 - F A set of final/accepting states, which is a subset of Q
 - δ A transition function, which is a total function from Q x Σ to Q
 - $\begin{array}{ll} \delta: (Q \times \Sigma) \rightarrow Q & \delta \text{ is defined for any } q \text{ in } Q \text{ and } s \text{ in } \Sigma, \text{ and} \\ \delta(q,s) = q' & \text{ is equal to some state } q' \text{ in } Q, \text{ could be } q' = q \end{array}$

Intuitively, $\delta(q,s)$ is the state entered by M after reading symbol s while in state q.

• For example #1:

Q = {q₀, q₁} Σ = {0, 1} Start state is q₀ F = {q₀}

δ:

• For example #2:

Q = {q₀, q₁, q₂} Σ = {a, b, c} Start state is q₀ F = {q₂}

δ: b а С \mathbf{q}_0 **4**0 **H**0 \mathbf{q}_1 \mathbf{q}_1 \mathbf{q}_1 \mathbf{q}_1 \mathbf{q}_2 \mathbf{q}_2 \mathbf{q}_2 \mathbf{q}_2 \mathbf{q}_2

- ${\ensuremath{\, \bullet }}$ Since δ is a function, at each step M has exactly one option.
- It follows that for a given string, there is exactly one computation.

EXTENSION OF A TO STRINGS

 δ^{\wedge} : (Q x Σ^{*}) -> Q

 $\delta^{\hat{}}(q,w)$ - The state entered after reading string w having started in state q.

Formally:

1) $\delta^{\hat{}}(q, \epsilon) = q$, and 2) For all w in $\Sigma^{\hat{}}$ and a in Σ $\delta^{\hat{}}(q, wa) = \delta (\delta^{\hat{}}(q, w), a)$ • Recall Example #1:

• What is $\delta^{(q_0, 011)}$? Informally, it is the state entered by M after processing 011 having started in state $q_{0.}$

• Formally:

$$\begin{split} \delta^{\wedge}(q_0, 011) &= \delta \left(\delta^{\wedge}(q_0, 01), 1 \right) & \text{by rule } \# 2 \\ &= \delta \left(\delta \left(\delta^{\wedge}(q_0, 0), 1 \right), 1 \right) & \text{by rule } \# 2 \\ &= \delta \left(\delta \left(\delta \left(\delta^{\wedge}(q_0, \lambda), 0 \right), 1 \right), 1 \right) & \text{by rule } \# 2 \\ &= \delta \left(\delta \left(\delta(q_0, 0), 1 \right), 1 \right) & \text{by rule } \# 1 \\ &= \delta \left(\delta \left(q_1, 1 \right), 1 \right) & \text{by definition of } \delta \\ &= \delta \left(q_1, 1 \right) & \text{by definition of } \delta \\ &= q_1 & \text{by definition of } \delta \end{split}$$

• Is 011 accepted? No, since $\delta^{(q_0, 011)} = q_1$ is not a final state.

• Note that:

$$\delta^{\hat{}}(q,a) = \delta(\delta^{\hat{}}(q,\epsilon),a)$$
 by definition of $\delta^{\hat{}}$, rule
#2
= $\delta(q,a)$ by definition of $\delta^{\hat{}}$, rule
#1

• Therefore:

$$\delta^{(1)}(q, a_1a_2...a_n) = \delta(\delta(...\delta(\delta(q, a_1), a_2)...), a_n)$$

• Hence, we can use δ in place of $\delta^{\hat{}}$:

$$\delta^{(q)}(q, a_1a_2...a_n) = \delta(q, a_1a_2...a_n)$$

• Recall Example #2:

• What is $\delta(q_0, 011)$? Informally, it is the state entered by M after processing 011 having started in state $q_{0.}$

• Formally:

$$\begin{split} \delta(\mathbf{q}_0, \, 011) &= \delta \; (\delta(\mathbf{q}_0, 01), \, 1) & \text{by rule } \# 2 \\ &= \delta \; (\delta \; (\delta(\mathbf{q}_0, 0), \, 1), \, 1) & \text{by rule } \# 2 \\ &= \delta \; (\delta \; (\mathbf{q}_1, \, 1), \, 1) & \text{by definition of} \\ \delta &= \delta \; (\mathbf{q}_1, \, 1) & \text{by definition of } \delta \\ &= q_1 & \text{by definition of } \delta \end{split}$$

• Is 011 accepted? No, since $\delta(q_0, 011) = q_1$ is not a final state.

• Recall Example #2:

• What is $\delta(q_1, 10)$?

$$\begin{split} \delta(\mathbf{q}_1, \ 10) &= \delta \ (\delta(\mathbf{q}_1, 1), \ 0) & \text{by rule } \# 2 \\ &= \delta \ (\mathbf{q}_1, \ 0) & \text{by definition of } \delta \\ &= \mathbf{q}_2 & \text{by definition of } \delta \end{split}$$

• Is 10 accepted? No, since $\delta(q_0, 10) = q_1$ is not a final state. The fact that $\delta(q_1, 10) = q_2$ is irrelevant!

DEFINITIONS FOR DFAS

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and let w be in Σ^* . Then w is *accepted* by M iff $\delta(q_0, w) = p$ for some state p in F.
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then the language accepted by M is the set:

 $L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } \delta(q_0, w) \text{ is in } F\}$

• Another equivalent definition:

 $L(M) = \{w \mid w \text{ is in } \Sigma^* \text{ and } w \text{ is accepted by } M\}$

- Let L be a language. Then L is a regular language iff there exists a DFA M such that L = L(M).
- Let $M_1 = (Q_1, \Sigma_1, \delta_1, q_0, F_1)$ and $M_2 = (Q_2, \Sigma_2, \delta_2, p_0, F_2)$ be DFAs. Then M_1 and M_2 are *equivalent* iff $L(M_1) = L(M_2)$.

• Notes:

- A DFA M = (Q, Σ , δ , q₀, F) partitions the set Σ^* into two sets: L(M) and Σ^* L(M).
- If L = L(M) then L is a subset of L(M) and L(M) is a subset of L.
- Similarly, if L(M₁) = L(M₂) then L(M₁) is a subset of L(M₂) and L(M₂) is a subset of L(M₁).
- Some languages are regular, others are not. For example, if

 $L_1 = \{x \mid x \text{ is a string of 0's and 1's containing an even number of 1's} and$

 $L_2 = \{x \mid x = 0^n 1^n \text{ for some } n \ge 0\}$

then L_1 is regular but L_2 is not.

• Questions:

- How do we determine whether or not a given language is regular?
- How could a program "simulate" a DFA?

 $L(M) = \{x \mid x \text{ is a string of 0's and 1's and } |x| \ge 2\}$

Prove this by induction

 $L(M) = \{x \mid x \text{ is a string of (zero or more) a's, b's and c's such that x does not contain the substring$ *aa* $\}$

L(M) = {x | x is a string of a's, b's and c's such that x contains the substring *aba*}

L(M) = {x | x is a string of a's and b's such that x contains both *aa* and *bb*}

20

• Let $\Sigma = \{0, 1\}$. Give DFAs for $\{\}, \{\epsilon\}, \Sigma^*$, and Σ^+ .

SOME CLOSURE PROPERTIES OF REGULAR SETS

Issue: what languages can be accepted by finite automata ?

• Recall the definitions of some language operations:

•
$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

- $A \cap B = \{x \mid x \in A / \land x \in B\}$
- $\neg A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$
- $AB = \{xy \mid x \in A / \setminus y \in B\}$
- $\circ \ A^* = \{x_1 \ x_2 \ \ldots x_n \ \mid \ n \geq 0 \ / \backslash \ x_i \in A \ for \ 0 \leq i \leq n \}$
- and more ... ex: $A / B = \{x \mid \exists y \in B \text{ s.t. } xy \in A\}.$
- Problem: If A and B are regular [languages], then which of the above sets are regular as well?

Ans: _____.

THE PRODUCT CONSTRUCTION

• $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1), M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$: two DFAs Define a new machine $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ where

- $\circ \ \ Q_3 = Q_1 \ x \ Q_2 = \{(q_1,q_2) \ | \ \ q_1 \in Q_1 \ and \ q_2 \in Q_2 \ \}$
- $S_3 = (S_1, S_2);$

•
$$F_3 = F_1 x F_2 = \{(q_1, q_2) \mid q_1 \in F_1 \land q_2 \in F_2\}$$
 and

•
$$\delta_3: \mathbf{Q}_3 \ge \Sigma \longrightarrow \mathbf{Q}_3$$
 is defined to be
 $\delta_3((\mathbf{q}_1, \mathbf{q}_2), \mathbf{a}) = (\delta_1(\mathbf{q}_1, \mathbf{a}), \delta_2(\mathbf{q}_2, \mathbf{a}))$
for all $(\mathbf{q}_1, \mathbf{q}_2) \in \mathbf{Q}$, $\mathbf{a} \in \Sigma$.

The machine M₃, denoted M₁xM₂, is called the *product* of M₁ and M₂. The behavior of M₃ may be viewed as the parallel execution of M₁ and M₂.

• Lem 4.1: For all
$$x \in \Sigma^*$$
, $\Delta_3((p,q),x) = (\Delta_1(p,x), \Delta_2(q,x))$.

Pf: By induction on the length |x| of x. Basis: |x| = 0: then $\Delta_3((p,q),\epsilon) = (p,q) = (\Delta_1(p,\epsilon), \Delta_2(q,\epsilon))$

THE PRODUCT CONSTRUCTION (CONT'D)

Ind. step: assume the lemma hold for x in Σ^* , we show it holds for xa, where a in Σ .

```
--- definition of \Delta_3
  \Delta_{3}((p,q),xa) = \delta_{3}(\Delta_{3}((p,q),x), a)
             = \delta_3((\Delta_1(p,x), \Delta_2(q,x)), a)
                                                         --- Ind. hyp.
             = (\delta_1(\Delta_1(\mathbf{p},\mathbf{x}),\mathbf{a}), \delta_2(\Delta_2(\mathbf{q},\mathbf{x}),\mathbf{a}) \quad \text{--- def. of } \delta_3
            = (\Delta_1(p,xa), \Delta_2(p,xa)) QED
                                                                 --- def of \Delta_1 and \Delta_2.
Theorem 4.2: L(M_3) = L(M_1) \cap L(M_2).
pf: for all x \in \Sigma^*, x \in L(M_3)
   iff \Delta_3(s_3, x) \in F_3
                                                                             --- def. of
   acceptance
   iff \Delta_3((s_1,s_2),x) \in F_3
                                                                 --- def. of s_3
   iff (\Delta_1(s_1,x), \Delta_2(s_2,x)) \in F_3 = F_1 x F_2 --- def. of F_3
   iff \Delta_1(s_1,x) \in F_1 and \Delta_2(s_2,x) \in F_2 --- def. of set product
```

iff $x \in L(M_1)$ and $x \in L(M_2)$

iff $x \in L(M_1) \cap L(M_2)$. QED

- --- def. of acceptance
- --- def. of intersection.

REGULAR LANGUAGES ARE CLOSED UNDER U, \cap AND ~

Theorem: IF A and B are regular than so are $A \cap B$, ~A and AUB.

pf: (1) A and B are regular

 $\Rightarrow \exists DFA M_1 \text{ and } M_2 \text{ s.t. } L(M_1) = A \text{ and } L(M_2) = B - - \text{ def. of } RL$ $= L(M_1 \times M_2) = L(M_1) \cap L(M_2) = A \cap B --- Theorem 4.2$ $=> A \cap B$ is regular. -- def. of RL. (2) Let M = (Q, Σ , δ ,s,F) be the machine s.t. L(M) = A. Define M' = $(Q, \Sigma, \delta, s, F')$ where F' = $F = \{q \in Q \mid q \notin F\}$. Now for all x in Σ^* , $x \in L(M')$ $<=> \Delta(s,x) \in F' = ~F$ --- def. of acceptance $<=> \Delta(s,x) \notin F$ --- def of ~F $<=> x \notin L(M)$ iff $x \notin A$. -- def. of acceptance Hence $\sim A$ is accepted by L(M') and is regular ! (3). Note that AUB = \sim (\sim A $\cap \sim$ B). Hence the fact that A and B are regular implies \sim A, \sim B, (\sim A $\cap \sim$ B) and \sim (\sim A $\cap \sim$ B) = AUB are regular too.