COURSE: THEORY OF AUTOMATA COMPUTATION

IOPICS TO BE COVERED

- Finite automata and regular sets
- Definition of deterministic finite automata
- String accepted by DFA

DETERMINISTIC FINITE STATTE AUTOMATA (DFA)

- One-way, infinite tape, broken into cells
- One-way, read-only tape head.
- Finite control, I.e., a program, containing the position of the read head, current symbol being scanned, and the current "state."
- A string is placed on the tape, read head is positioned at the left end, and the DFA will read the string one symbol at a time until all symbols have been read. The DFA will then either accept or reject.
- The finite control can be described by a transition diagram:
- Example \#1:

- One state is final/accepting, all others are rejecting.
- The above DFA accepts those strings that contain an even number of 0's
- Example \#2:

- Accepts those strings that contain at least two c's

Inductive Proof (sketch):

Base: x a string with $|\mathrm{x}|=0$. state will be $\mathrm{q} 0=>$ rejected.
Inductive hypothesis: $|\mathrm{x}|=\mathrm{k}$, rejected -in state q 0 (x must have 0 c), $O R$, rejected - in state q 1 (x must have 1 c), $O R$, accepted - in state q2 (x already with 2 c 's)

Inductive step: String xp , for $\mathrm{p}=\mathrm{a}, \mathrm{b}$ and c
$q 0$ and, $x a$ or $x b: q 0->q 0$ rejected, as should be (no c)
$q 0$ and, $x c: ~ q 0->q 1$ rejected, as should be (1 c)
$q 1$ and x a or $x b: ~ q 1->q 1$ rejected, ...
q1 and $x c$: q1-> q2 accepted, as should be (2 c's now)
$q 2$ and $x a$, or $x b$, or $x c: ~ q 2->q 2$ accepted, (no change in c)

FORMAL DEFINITION OF A DFA

- A DFA is a five-tuple:
$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q A finite set of states
$\Sigma \quad$ A finite input alphabet
$\mathrm{q}_{0} \quad$ The initial/starting state, q_{0} is in Q
F A set of final/accepting states, which is a subset of Q
$\delta \quad$ A transition function, which is a total function from $\mathrm{Q} \times \Sigma$ to Q

$$
\begin{array}{ll}
\delta:(Q \times \Sigma) \rightarrow Q & \delta \text { is defined for any } q \text { in } Q \text { and } s \text { in } \Sigma, \text { and } \\
\delta(q, s)=q & \text { is equal to some state } q^{\prime} \text { in } Q, \text { could be } q^{\prime}=q
\end{array}
$$

Intuitively, $\delta(q, s)$ is the state entered by M after reading symbol s while in state q.

- For example \#1:
$\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$
$\Sigma=\{0,1\}$
Start state is q_{0}
$\mathrm{F}=\left\{\mathrm{q}_{0}\right\}$

ठ:

- For example \#2:
$Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
$\Sigma=\{a, b, c\}$
Start state is q_{0}
$\mathrm{F}=\left\{\mathrm{q}_{2}\right\}$

$\delta:$

- Since δ is a function, at each step M has exactly one option.
- It follows that for a given string, there is exactly one computation.

EXTENSION OF \triangle TO STRINGS

$\delta^{\wedge}:\left(Q \times \Sigma^{*}\right) \rightarrow Q$
$\delta^{\wedge}(\mathrm{q}, \mathrm{w})$ - The state entered after reading string w having started in state q.

Formally:

1) $\delta^{\wedge}(q, \varepsilon)=q$, and
2) For all w in Σ^{*} and a in Σ

$$
\delta^{\wedge}(q, w a)=\delta\left(\delta^{\wedge}(q, w), a\right)
$$

- Recall Example \#1:

- What is $\delta^{\wedge}\left(q_{0}, 011\right)$? Informally, it is the state entered by M after processing 011 having started in state q_{0}.
- Formally:

$$
\begin{aligned}
\delta^{\wedge}\left(\mathrm{q}_{0}, 011\right) & =\delta\left(\delta^{\wedge}\left(\mathrm{q}_{0}, 01\right), 1\right) & & \text { by rule \#2 } \\
& =\delta\left(\delta\left(\delta^{\wedge}\left(\mathrm{q}_{0}, 0\right), 1\right), 1\right) & & \text { by rule \#2 } \\
& =\delta\left(\delta\left(\delta\left(\delta^{\wedge}\left(\mathrm{q}_{0}, \lambda\right), 0\right), 1\right), 1\right) & & \text { by rule \#2 } \\
& =\delta\left(\delta\left(\delta\left(\mathrm{q}_{0}, 0\right), 1\right), 1\right) & & \text { by rule \#1 } \\
\delta & & & \text { by definition of } \\
& =\delta\left(\delta\left(q_{1}, 1\right), 1\right) & & \text { by definition of } \delta \\
& =\delta\left(q_{1}, 1\right) & & \text { by definition of } \delta
\end{aligned}
$$

- Is 011 accepted? No, since $\delta^{\wedge}\left(q_{0}, 011\right)=q_{1}$ is not a final state.
- Note that:
\#2

$$
\begin{aligned}
\delta^{\wedge}(q, a) & \text { by definition of } \delta^{\wedge}, \text { rule } \\
=\delta(q, a) & \text { by definition of } \delta^{\wedge}, \text { rule }
\end{aligned}
$$

\#1
© Therefore:

$$
\delta^{\wedge}\left(q, a_{1} a_{2} \ldots a_{n}\right)=\delta\left(\delta(\ldots \delta(\delta(q, a 1), a 2) \ldots), a_{n}\right)
$$

- Hence, we can use δ in place of δ^{\wedge} :

$$
\delta^{\wedge}\left(q, a_{1} a_{2} \ldots a_{n}\right)=\delta\left(q, a_{1} a_{2} \ldots a_{n}\right)
$$

- Recall Example \#2:

- What is $\delta\left(q_{0}, 011\right)$? Informally, it is the state entered by M after processing 011 having started in state q_{0}.
- Formally:

$$
\begin{array}{rlrl}
\delta\left(q_{0}, 011\right) & =\delta\left(\delta\left(q_{0}, 01\right), 1\right) & & \text { by rule \#2 } \\
& =\delta\left(\delta\left(\delta\left(q_{0}, 0\right), 1\right), 1\right) & & \text { by rule \#2 } \\
& =\delta\left(\delta\left(q_{1}, 1\right), 1\right) & & \text { by definition of } \\
\delta & & \text { by definition of } \delta \\
& =\delta\left(q_{1}, 1\right) & & \text { by definition of } \delta
\end{array}
$$

- Is 011 accepted? No, since $\delta\left(q_{0}, 011\right)=q_{1}$ is not a final state.
- Recall Example \#2:

- What is $\delta\left(q_{1}, 10\right)$?

$$
\begin{aligned}
\delta\left(\mathrm{q}_{1}, 10\right) & =\delta\left(\delta\left(\mathrm{q}_{1}, 1\right), 0\right) \\
& =\delta\left(\mathrm{q}_{1}, 0\right) \\
& =\mathrm{q}_{2}
\end{aligned}
$$

by rule \#2
by definition of δ by definition of δ

- Is 10 accepted? No, since $\delta\left(q_{0}, 10\right)=q_{1}$ is not a final state. The fact that $\delta\left(q_{1}, 10\right)=q_{2}$ is irrelevant!

DEFINITIONS FOR DFAS

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let w be in Σ^{*}. Then w is accepted by M iff $\delta\left(q_{0}, w\right)=p$ for some state p in F.
- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Then the language accepted by M is the $L(M)=\left\{w \mid w\right.$ is in Σ^{*} and $\delta\left(q_{0}, w\right)$ is in $\left.F\right\}$
- Another equivalent definition:

$$
L(M)=\left\{w \mid w \text { is in } \Sigma^{*} \text { and } w \text { is accepted by } M\right\}
$$

- Let L be a language. Then L is a regular language iff there exists a DFA such that $L=L(M)$.
- Let $M_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, q_{0}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, p_{0}, F_{2}\right)$ be DFAs. Then M_{1} and M_{2} are equivalent iff $L\left(M_{1}\right)=L\left(M_{2}\right)$.
- Notes:
- A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ partitions the set Σ^{*} into two sets: $L(M)$ and $\Sigma^{*}-L(M)$.
- If $L=L(M)$ then L is a subset of $L(M)$ and $L(M)$ is a subset of L.
- Similarly, if $L\left(M_{1}\right)=L\left(M_{2}\right)$ then $L\left(M_{1}\right)$ is a subset of $L\left(M_{2}\right)$ and $L\left(M_{2}\right)$ is a subset of $L\left(M_{1}\right)$.
- Some languages are regular, others are not. For example, if
$L_{1}=\{x \mid x$ is a string of 0 's and 1 's containing an even number of 1 's\} and

$$
L_{2}=\left\{x \mid x=0^{n} 1^{n} \text { for some } n>=0\right\}
$$

then L_{1} is regular but L_{2} is not.

- Questions:
- How do we determine whether or not a given language is regular?
- How could a program "simulate" a DFA?
- Give a DFA M such that:

$$
L(M)=\{x \mid x \text { is a string of } 0 \text { 's and } 1 \text { 's and }|x|>=2\}
$$

Prove this by induction

- Give a DFA M such that:

$$
L(M)=\{x \mid x \text { is a string of (zero or more) a's, b's and c's such }
$$ that x does not contain the substring $a a\}$

- Give a DFA M such that:

$$
\begin{gathered}
L(M)=\{x \mid x \text { is a string of a's, b's and c's such that } x \\
\text { contains the substring } a b a\}
\end{gathered}
$$

- Give a DFA M such that:
$L(M)=\{x \mid x$ is a string of a's and b's such that x
contains both $a a$ and $b b\}$

- Let $\Sigma=\{0,1\}$. Give DFAs for $\left\},\{\varepsilon\}, \Sigma^{*}\right.$, and Σ^{+}.

For $\}$:

For $\{\varepsilon\}$:

For Σ^{+}:

SOME CLOSURE PROPERTIES OF REGULAR SETS

Issue: what languages can be accepted by finite automata?

- Recall the definitions of some language operations:

$$
\begin{aligned}
& A \cup B=\{x \mid x \in A \text { or } x \in B\} . \\
& A \cap B=\{x \mid x \in A / x \in B\} \\
& \sim A=\Sigma^{*}-A=\left\{x \in \Sigma^{*} \mid x \notin A\right\} \\
& A B=\{x y \mid x \in A / y \in B\} \\
& A^{*}=\left\{x_{1} x_{2} \ldots x_{n} \mid n \geq 0 \wedge x_{i} \in A \text { for } 0 \leq i \leq n\right\} \\
& \text { and more } \ldots \text { ex: } A / B=\{x \mid \exists y \in B \text { s.t. } x y \in A\} .
\end{aligned}
$$

- Problem: If A and B are regular [languages], then which of the above sets are regular as well?

Ans: \qquad .

THE PRODUCT CONSTRUCTION

- $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right), M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$: two DFAs Define a new machine $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, s_{3}, F_{3}\right)$ where $\mathrm{Q}_{3}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}=\left\{\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \mid \mathrm{q}_{1} \in \mathrm{Q}_{1}\right.$ and $\left.\mathrm{q}_{2} \in \mathrm{Q}_{2}\right\}$
$\mathrm{s}_{3}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$;
$\mathrm{F}_{3}=\mathrm{F}_{1} \times \mathrm{F}_{2}=\left\{\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \mid \mathrm{q}_{1} \in \mathrm{~F}_{1} / \backslash \mathrm{q}_{2} \in \mathrm{~F}_{2}\right\}$ and
$\delta_{3}: Q_{3} \times \Sigma$--> Q_{3} is defined to be $\delta_{3}\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)$
for all $\left(q_{1}, q_{2}\right) \in Q, a \in \Sigma$.
- The machine M_{3}, denoted $M_{1} \times M_{2}$, is called the product of M_{1} and M_{2}. The behavior of M_{3} may be viewed as the parallel execution of M_{1} and M_{2}.
- Lem 4.1: For all $x \in \Sigma^{*}, \Delta_{3}((p, q), x)=\left(\Delta_{1}(p, x), \Delta_{2}(q, x)\right)$.

Pf: By induction on the length $|x|$ of x.
Basis: $|x|=0$: then $\Delta_{3}((p, q), \varepsilon)=(p, q)=\left(\Delta_{1}(p, \varepsilon), \Delta_{2}(q, \varepsilon)\right)$

THE PRODUCT CONSTRUCTION

 (CONT'D)Ind. step: assume the lemma hold for x in Σ^{*}, we show it holds for xa, where a in Σ.

$$
\begin{array}{rlrl}
\Delta_{3}((\mathrm{p}, \mathrm{q}), \mathrm{xa})=\delta_{3}\left(\Delta_{3}((\mathrm{p}, \mathrm{q}), \mathrm{x}),\right. \text { a) } & & \cdots \text { definition of } \Delta_{3} \\
& =\delta_{3}\left(\left(\Delta_{1}(\mathrm{p}, \mathrm{x}), \Delta_{2}(\mathrm{q}, \mathrm{x})\right),\right. \text { a) } & & \cdots \text { Ind. hyp. } \\
& =\left(\delta_{1}\left(\Delta_{1}(\mathrm{p}, \mathrm{x}), \mathrm{a}\right), \delta_{2}\left(\Delta_{2}(\mathrm{q}, \mathrm{x}), \mathrm{a}\right)\right. & \cdots \text { def. of } \delta_{3} \\
& =\left(\Delta_{1}(\mathrm{p}, \mathrm{xa}), \Delta_{2}(\mathrm{p}, \mathrm{xa})\right) & \text { QED } & \\
\hline \text { def of } \Delta_{1} \text { and } \Delta_{2} .
\end{array}
$$

Theorem 4.2: $L\left(M_{3}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.
pf: for all $x \in \Sigma^{*}, x \in L\left(M_{3}\right)$

iff $\Delta_{3}\left(S_{3}, x\right) \in \mathrm{F}_{3}$ acceptance	--- def. of
ff $\Delta_{3}\left(\left(s_{1}, s_{2}\right), x\right) \in F_{3}$	--- def. of s_{3}
$\left(\Delta_{1}\left(s_{1}, x\right), \Delta_{2}\left(s_{2}, x\right)\right) \in F_{3}=F_{1} \times$ P2	--- def. of F_{3}
$\begin{aligned} & \Delta_{1}\left(s_{1}, x\right) \in F_{1} \text { and } \Delta_{2}\left(s_{2}, x\right) \in F_{2} \\ & x \in L\left(M_{1}\right) \text { and } x \in L\left(M_{2}\right) \end{aligned}$	--- def. of set product --- def. of acceptance
, L($\left.M_{1}\right) \cap \mathrm{L}\left(M_{2}\right)$. QED	f. of inter

REGULAR LANGUAGES ARE CLOSED UNDER U, \cap AND ~

Theorem: IF A and B are regular than so are $A \cap B, \sim A$ and AUB.
pf : (1) A and B are regular
$=>\exists$ DFA M_{1} and M_{2} s.t. $L\left(M_{1}\right)=A$ and $L\left(M_{2}\right)=B$-- def. of RL
$\Rightarrow L\left(M_{1} \times M_{2}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)=A \cap B$--- Theorem 4.2
$==>A \cap B$ is regular. $\quad-$ def. of RL.
(2) Let $M=(Q, \Sigma, \delta, s, F)$ be the machine s.t. $L(M)=A$.

Define $M^{\prime}=\left(Q, \Sigma, \delta, s, F^{\prime}\right)$ where $F^{\prime}=\sim F=\{q \in Q \mid q \notin F\}$. Now for all x in $\Sigma^{*}, x \in L\left(M^{\prime}\right)$

$$
\begin{array}{ll}
\Leftrightarrow=\Delta \Delta(s, x) \in F^{\prime}=\sim F & \text {-- def. of acceptance } \\
<=\Delta \Delta(s, x) \notin F & -- \text { def of } \sim F \\
\Leftrightarrow=x \notin L(M) \text { iff } x \notin A . & - \text { def. of acceptance }
\end{array}
$$

Hence $\sim A$ is accepted by $L\left(M^{\prime}\right)$ and is regular !
(3). Note that $A \cup B=\sim(\sim A \cap \sim B)$. Hence the fact that A and B are regular implies $\sim A, \sim B,(\sim A \cap \sim B)$ and $\sim(\sim A \cap \sim B)=A U B$ are regular too.

