


 Finite automata and regular sets 

Definition of deterministic finite automata 

 String  accepted by DFA 

 



                                                   …….. 

 

 

 

 

 

 

 One-way, infinite tape, broken into cells 

 One-way, read-only tape head. 

 Finite control, I.e., a program, containing the position of the read 
head, current symbol being scanned, and the current “state.” 

 A string is placed on the tape, read head is positioned at the left 
end, and the DFA will read the string one symbol at a time until all 
symbols have been read. The DFA will then either accept or reject. 
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 The finite control can be described by a transition diagram: 

 

 Example #1: 

 

 

    

  

 

 

 

 

 

          1        0       0        1        1  

   q0 q0 q1 q0 q0 q0 

 

 One state is final/accepting, all others are rejecting. 

 The above DFA accepts those strings that contain an even number of 
0’s 
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 Example #2: 

 

 

    

  

 

 

 

  

          a        c       c        c        b  accepted 

   q0 q0 q1 q2 q2 q2 

 

          a        a       c    rejected 

   q0 q0 q0 q1               

 

 Accepts those strings that contain at least two c’s 
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Inductive Proof (sketch): 

 

Base: x a string with |x|=0. state will be q0 => rejected. 

 

Inductive hypothesis: |x|=k, rejected -in state q0 (x must have 0 c), 

  OR, rejected – in state q1 (x must have 1 c), 

  OR, accepted – in state q2 (x already with 2 c’s) 

 

Inductive step: String xp, for p = a, b and c 

 q0 and, xa or xb: q0->q0 rejected, as should be (no c) 

 q0 and, xc: q0 -> q1 rejected, as should be (1 c) 

 q1 and xa or xb: q1 -> q1 rejected, … 

 q1 and xc:  q1-> q2 accepted, as should be ( 2 c’s now) 

 q2 and xa, or xb, or xc:  q2 -> q2 accepted, (no change in c) 



 A DFA is a five-tuple: 

 

 M = (Q, Σ, δ, q0, F) 

 

 Q A finite set of states 

 Σ A finite input alphabet 

 q0 The initial/starting state, q0 is in Q 

 F A set of final/accepting states, which is a subset of Q 

 δ A transition function, which is a total function from Q x Σ to Q 

 

   δ: (Q x Σ) –> Q    δ is defined for any q in Q and s in Σ, and  

   δ(q,s) = q’    is equal to some state q’ in Q, could be q’=q 

 

 Intuitively, δ(q,s) is the state entered by M after reading symbol s while in 
state q. 

7 



 For example #1: 

 

 Q = {q0, q1} 

 Σ = {0, 1} 

 Start state is q0 

 F = {q0} 

 

 δ: 

   0 1 

   q0  q1   q0 

 

   q1   q0  q1 
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 For example #2: 

 

 Q = {q0, q1, q2} 

 Σ = {a, b, c} 

 Start state is q0 

 F = {q2} 

 

 δ:  a b c 

   q0  q0   q0  q1 

 

   q1   q1  q1  q2 

 

   q2  q2  q2  q2 

 

 

 Since δ is a function, at each step M has exactly one option. 

 It follows that for a given string, there is exactly one computation. 

9 

q1 q0 
q2 

a 

b 

a 

b 

c c 

a/b/c 



δ^ : (Q x Σ*) –> Q 

 

δ^(q,w) – The state entered after reading string w having started in 

state q. 

 

 

Formally: 

 

 1) δ^(q, ε) = q, and 

 2) For all w in Σ* and a in Σ 

   δ^(q,wa) = δ (δ^(q,w), a)  
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 Recall Example #1: 

 

 

 

 
 What is δ^(q0, 011)? Informally, it is the state entered by M after 

processing 011 having started in state q0. 

 Formally: 

 

  δ^(q0, 011)  = δ (δ^(q0,01), 1)   by rule #2 

   = δ (δ ( δ^(q0,0), 1), 1)  by rule #2 

   = δ (δ (δ (δ^(q0, λ), 0), 1), 1) by rule #2 

   = δ (δ (δ(q0,0), 1), 1)  by rule #1 

   = δ (δ (q1, 1), 1)   by definition of 
δ 

   = δ (q1, 1)   by definition of δ 

   = q1    by definition of δ 

 

 Is 011 accepted? No, since δ^(q0, 011) = q1 is not a final state. 
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 Note that: 

 

  δ^ (q,a)  = δ(δ^(q, ε), a)  by definition of δ^, rule 
#2 

   = δ(q, a)   by definition of δ^, rule 
#1 

 

 Therefore: 

 

   δ^ (q, a1a2…an) = δ(δ(…δ(δ(q, a1), a2)…), an) 

 

 

 Hence, we can use δ in place of δ^: 

 

  δ^(q, a1a2…an) = δ(q, a1a2…an) 
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 Recall Example #2: 

 

 

 

 

 What is δ(q0, 011)? Informally, it is the state entered by M after 
processing 011 having started in state q0. 

 Formally: 

 

  δ(q0, 011)  = δ (δ(q0,01), 1)   by rule #2 

   = δ (δ (δ(q0,0), 1), 1)  by rule #2 

   = δ (δ (q1, 1), 1)   by definition of 
δ 

   = δ (q1, 1)   by definition of δ 

   = q1    by definition of δ 

 

 Is 011 accepted? No, since δ(q0, 011) = q1 is not a final state. 
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 Recall Example #2: 

 

 

 

 

 What is δ(q1, 10)? 

 

  δ(q1, 10)  = δ (δ(q1,1), 0)   by rule #2 

   = δ (q1, 0)   by definition of δ 

   = q2    by definition of δ 

 

 Is 10 accepted? No, since δ(q0, 10) = q1 is not a final state. The fact 

that δ(q1, 10) = q2 is irrelevant! 
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 Let M = (Q, Σ, δ,q0,F) be a DFA and let w be in Σ*.  Then w is accepted by  M  
iff δ(q0,w) = p  for some state p in F.  

 

 Let  M = (Q, Σ, δ,q0,F)  be a DFA. Then the language accepted by M is the set: 

 

  L(M) = {w | w is in Σ* and δ(q0,w) is in F}  

 

 Another equivalent definition: 

 

  L(M) = {w | w is in Σ* and w is accepted by M} 

  

 Let  L  be a language. Then  L  is a regular language iff there exists a DFA  M  
such that L = L(M). 

 

 Let  M1 = (Q1, Σ1, δ1, q0, F1)  and M2 = (Q2, Σ2, δ2, p0, F2)  be DFAs. Then M1  
and M2 are equivalent iff  L(M1) = L(M2). 
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 Notes: 

 A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and 

 Σ* - L(M).  

 

 If L = L(M) then L is a subset of L(M) and L(M) is a subset of L. 

 

 Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a subset of 
L(M1).  

 

 Some languages are regular, others are not. For example, if 

 

   L1 = {x | x is a string of 0's and 1's containing an even   
  number of 1's} and  

 

   L2 = {x | x = 0n1n for some n >= 0}  

 

  then L1 is regular but L2 is not. 

 

 Questions: 

 How do we determine whether or not a given language is regular? 

 How could a program “simulate” a DFA? 
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 Give a DFA M such that: 

 

   L(M) = {x | x is a string of 0’s and 1’s and |x| >= 2} 

 

 

 

 

 

 

 

 

 

Prove this by induction 
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 Give a DFA M such that: 

 

  L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s such  

    that x does not contain the substring aa} 
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 Give a DFA M such that: 

 

    L(M) = {x | x is a string of a’s, b’s and c’s such that x  

     contains the substring aba} 
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 Give a DFA M such that: 

 

   L(M) = {x | x is a string of a’s and b’s such that x  

     contains both aa and bb} 
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 Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+. 

 

 For {}:   For {ε}:    

 

 

 

 

 

 

 For Σ*:   For Σ+: 
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Issue: what languages can be accepted by finite 

automata ? 

 Recall the definitions of some language operations: 

◦  A U B = {x | x  A or x  B}. 

◦  A B = {x | x  A /\ x  B} 

◦  ~A = S* - A = {x  S* | x  A} 

◦  AB = {xy | x  A /\ y  B} 

◦ A* = {x1 x2 ...xn | n  0 /\ xi  A for  0  i  n} 

◦  and more ... ex: A / B = {x | $y  B s.t. xy  A }. 

 Problem: If A and B are regular [languages], then 

which of the above sets are regular as well? 

Ans: ______. 



   M1 = (Q1,S,d1,s1,F1),  M2 = (Q2,S,d2,s2,F2) : two DFAs  

 Define a new machine M3 = (Q3, S, d3, s3, F3) where 
◦ Q3 = Q1 x Q2 = {(q1,q2) | q1  Q1 and q2  Q2 } 

◦ s3 = (s1,s2);  

◦ F3=F1xF2 = {(q1,q2) | q1  F1 /\ q2  F2} and 

◦ d3:Q3 x S --> Q3 is defined to be 

         d3( (q1,q2), a) = (d1 (q1,a), d2 (q2,a))  

    for all (q1,q2)Q, a  S.  

 The machine M3, denoted M1xM2, is called the product of 
M1 and M2. The behavior of M3 may be viewed as the 
parallel execution of M1 and M2. 

  Lem 4.1: For all x  S*, D3((p,q),x) = (D1(p,x), D2(q,x)).  

Pf: By induction on the length |x| of x. 

  Basis: |x|= 0: then D3((p,q),e) = (p,q) = (D1 (p,e), D2(q,e)) 



Ind. step: assume the lemma hold for x in S*, we show it holds for 
xa, where a in S. 

  D3((p,q),xa) = d3( D3((p,q),x), a)    --- definition of D3 
  = d3((D1(p,x), D2 (q,x)), a)      --- Ind. hyp. 
   = (d1(D1(p,x),a), d2(D2 (q,x),a)   --- def. of d3 
   = (D1(p,xa), D2(p,xa))   QED --- def of D1 and D2.   
Theorem 4.2:  L(M3) = L(M1) L(M2). 
pf: for all x  S*, x  L(M3)    
 iff  D3(s3,x)  F3              --- def. of 

acceptance 
    iff  D3((s1,s2),x)  F3     --- def. of s3  
 iff  (D1(s1,x), D2(s2,x))  F3 = F1xF2   --- def. of F3 
 iff  D1(s1,x)  F1 and D2(s2,x)  F2    --- def. of set product 
    iff  x  L(M1) and x  L(M2)               --- def. of acceptance 
    iff x  L(M1) L(M2). QED  --- def. of intersection. 



Theorem: IF A and B are regular than so are AB, ~A and 
AUB. 

pf: (1) A and B are regular 
   => $ DFA M1 and M2 s.t. L(M1) = A and L(M2) = B -- def. of RL 
   => L(M1xM2) = L(M1) L(M2) = A B  --- Theorem 4.2 
  ==> A  B is regular.      -- def. of RL. 
 (2) Let M = (Q,S,d,s,F) be the machine s.t. L(M) = A. 
  Define M' = (Q,S,d,s,F') where F' = ~F = {q  Q | q  F}. 
  Now for all x in S*,  x  L(M') 
  <=> D(s,x)  F' = ~F      --- def. of acceptance 
  <=> D(s,x)  F  --- def of ~F 
  <=> x  L(M) iff x  A.   -- def. of acceptance 
 Hence ~A is accepted by L(M') and is regular ! 
(3). Note that AUB = ~(~A ~B). Hence the fact that A and B 

are regular implies  ~A, ~B, (~A ~B) and ~(~A ~B) = AUB 
are regular too.  


