COURSE: THEORY OF AUTOMATA COMPUTATION

TOPICS TO BE COVERED

- Introduction
- Why do we study Theory of Computation ?
- Importance of Theory of Computation
- Languages
- Languages and Problems

WHAT IS COMPUTATION ?

- Sequence of mathematical operations ?
 - What are, and are not, mathematical operations?
- Sequence of well-defined operations
 - How many operations ?
 - The fewer, the better.
 - Which operations ?
 - The simpler, the better.

WHAT DO WE STUDY IN THEORY OF COMPUTATION ?

• What is computable, and what is not ?

Basis of

- Algorithm analysis
- Complexity theory

 What a computer can and cannot do
 Are you trying to write a non-existing program?

Can you make your program more efficient?

WHAT DO WE STUDY IN COMPLEXITY THEORY ?

- What is easy, and what is difficult, to compute ?
- What is easy, and what is hard for computers to do?
- Is your cryptograpic scheme safe?

APPLICATIONS IN COMPUTER SCIENCE

Analysis of algorithms
Complexity Theory
Cryptography CompilersCircuit design

- 1936 Alan Turing invented the *Turing* machine, and proved that there exists an unsolvable problem.
- 1940's Stored-program computers were built.
- 1943 McCulloch and Pitts invented *finite automata*.
- 1956 Kleene invented regular expressions and proved the equivalence of regular expression and finite automata.

- 1956 Chomsky defined Chomsky hierarchy, which organized languages recognized by different automata into hierarchical classes.
- 1959 Rabin and Scott introduced
 nondeterministic finite automata and proved its equivalence to (deterministic) finite automata.
- 1950's-1960's More works on languages, grammars, and compilers

- 1965 Hartmantis and Stearns defined *time* complexity, and Lewis, Hartmantis and Stearns defined space complexity.
- 1971 Cook showed the first NP-complete problem, the satisfiability prooblem.
- 1972 Karp Showed many other NP-complete problems.

- 1976 Diffie and Helllman defined Modern
 Cryptography based on NP-complete problems.
- 1978 Rivest, Shamir and Adelman proposed a public-key encryption scheme, RSA.

ALPHABET AND STRINGS

- An *alphabet* is a finite, non-empty set of symbols.
 - {0,1 } is a binary alphabet.
 - { A, B, ..., Z, a, b, ..., z } is an English alphabet.
- A *string* over an alphabet Σ is a sequence of any number of symbols from Σ .
 - 0, 1, 11, 00, and 01101 are strings over {0, 1 }.
 - *Cat, CAT,* and *compute* are strings over the English alphabet.

EMPTY STRING

- An *empty string*, denoted by ε, is a string containing no symbol.
 - ε is a string over any alphabet.

LENGTH

 The length of a string x, denoted by *length*(x), is the number of positions of symbols in the string.
 Let Σ = {a, b, ..., z}

Let $\Sigma = \{a, b, ..., z\}$ length(automata) = 8 length(computation) = 11 $length(\varepsilon) = 0$

• x(i), denotes the symbol in the i^{th} position of a string x, for $1 \le i \le length(x)$.

STRING OPERATIONS

Concatenation
Substring
Reversal

CONCATENATION

The concatenation of strings x and y, denoted by x · y or x y, is a string z such that:

$$z(i) = x(i)$$
 for $1 \le i \le length(x)$

• z(i) = y(i) for $length(x) < i \le length(x) + length(y)$

• Example

automata·computation = automatacomputation

CONCATENATION

- The concatenation of string x for n times, where $n \ge 0$, is denoted by x^n
- $x^{0} = \varepsilon$ • $x^{1} = x$ • $x^{2} = x x$ • $x^{3} = x x x$

SUBSTRING

Let x and y be strings over an alphabet Σ

The string x is a substring of y if there exist strings w and z over Σ such that y = w x z.

- ε is a substring of every string.
- For every string x, x is a substring of x itself.

Example

 ε, comput and computation are substrings of computation.

REVERSAL

Let x be a string over an alphabet Σ

The reversal of the string x, denoted by x^r , is a string such that

- if x is ε , then x^r is ε .
- If *a* is in Σ , *y* is in Σ^* and *x* = *a y*, then $x^r = y^r a$.

EXAMPLE OF REVERSAL

- $(automata)^r$
- $= (utomata)^r a$
- $=(tomata)^r ua$
- $= (OMAtA)^r tua$
- $= (Mata)^r Otua$
- $= (ata)^r motua$
- $=(ta)^r$ amotua
- $= (a)^r tamotua$
- $= (\mathcal{E})^r atamotua$
- = atamotua

• The set of strings created from any number (0 or 1 or ...) of symbols in an alphabet Σ is denoted by Σ^* .

• That is,
$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i$$

• Let
$$\Sigma = \{0, 1\}$$
.

 $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ... \}.$

 The set of strings created from at least one symbol (1 or 2 or ...) in an alphabet Σ is denoted by Σ⁺.

• That is,
$$\Sigma^+ = \bigcup_{i=1}^{\infty} \Sigma^{i}$$

$$= \bigcup_{i=0..\infty} \Sigma^i - \Sigma^0$$

$$= \bigcup_{i=0..\infty} \Sigma^i - \{\varepsilon\}$$

Let Σ = {0, 1}. Σ⁺ = {0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ... }.

 Σ^* and Σ^+ are infinite sets.

LANGUAGES

- A language over an alphabet Σ is a set of strings over Σ .
 - Let $\Sigma = \{0, 1\}$ be the alphabet.
 - $L_e = \{ \omega \in \Sigma^* \mid \text{the number of } 1 \text{'s in } \omega \text{ is even} \}.$
 - ε, 0, 00, 11, 000, 110, 101, 011, 0000, 1100, 1010, 1001, 0110, 0101, 0011, ... are in L_e

OPERATIONS ON LANGUAGES

- Our Complementation
- Output
- Intersection
- Concatenation
- Reversal
- Olosure

COMPLEMENTATION

Let *L* be a language over an alphabet Σ . The complementation of *L*, denoted by \overline{L} , is Σ^* -*L*.

Example:

Let $\Sigma = \{0, 1\}$ be the alphabet. $L_e = \{\omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is even}\}.$ $\overline{L}_e = \{\omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is not even}\}.$ $\overline{L}_e = \{\omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is odd}\}.$

UNION

- Let L_1 and L_2 be languages over an alphabet Σ .
 - The union of L_1 and L_2 , denoted by $L_1 \cup L_2$, is $\{x \mid x \text{ is in } L_1 \text{ or } L_2\}$.

Example:

- ${x \in \{0,1\}^* | x \text{ begins with } 0} \cup {x \in \{0,1\}^* | x \text{ ends with } 0}$
 - = $\{x \in \{0,1\}^* | x \text{ begins or ends with } 0\}$

INTERSECTION

Let L_1 and L_2 be languages over an alphabet Σ .

The intersection of L_1 and L_2 , denoted by $L_1 \cap L_2$, is { $x \mid x$ is in L_1 and L_2 }.

Example:

{ $x \in \{0,1\}^* | x \text{ begins with 0} \} \cap \{ x \in \{0,1\}^* | x \text{ ends with 0} \}$

= { $x \in \{0,1\}^*$ | x begins and ends with 0}

CONCATENATION

Let L_1 and L_2 be languages over an alphabet Σ . The concatenation of L_1 and L_2 , denoted by $L_1 \cdot L_2$, is $\{w_1 \cdot w_2 \mid w_1 \text{ is in } L_1 \text{ and } w_2 \text{ is in } L_2\}$. Example

- { $x \in \{0,1\}^*$ | x begins with 0} $\{x \in \{0,1\}^*$ | x ends with 0}
- = { $x \in \{0,1\}^*$ | x begins and ends with 0 and length(x) \ge 2}
 - { $x \in \{0,1\}^*$ | x ends with 0} $x \in \{0,1\}^*$ | x begins with 0}
- = { $x \in \{0,1\}^*$ | x has 00 as a substring}

REVERSAL

Let *L* be a language over an alphabet Σ .

The reversal of *L*, denoted by L^r , is $\{w^r | w \text{ is } in L\}$.

Example

 $\{x \in \{0,1\}^* | x \text{ begins with } 0\}^r$ = $\{x \in \{0,1\}^* | x \text{ ends with } 0\}$ $\{x \in \{0,1\}^* | x \text{ has } 00 \text{ as a substring}\}^r$ = $\{x \in \{0,1\}^* | x \text{ has } 00 \text{ as a substring}\}$

KLEENE'S CLOSURE

Let *L* be a language over an alphabet Σ .

The Kleene's closure of *L*, denoted by L^* , is $\{x \mid for an integer n \ge 0 \ x = x_1 x_2 \dots x_n and x_1, x_2, \dots, x_n are in L\}.$

That is,
$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Example: Let $\Sigma = \{0,1\}$ and

 $L_e = \{ \omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is even} \}$ $L_e^* = \{ \omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is even} \}$ $(\overline{L}_e)^* = \{ \omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is odd} \}^*$ $= \{ \omega \in \Sigma^* \mid \text{the number of 1's in } \omega > 0 \}$

CLOSURE

Let L be a language over an alphabet Σ .

The closure of *L*, denoted by L^+ , is { *x* | for an integer $n \ge 1$, $x = x_1 x_2 \dots x_n$ and x_1, x_2, \dots, x_n are in *L*}

That is,
$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Example:

Let $\Sigma = \{0, 1\}$ be the alphabet. $L_e = \{\omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is even}\}$ $L_e^+ = \{\omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is even}\} = L_e^{*}$

OBSERVATION ABOUT CLOSURE

 $L^+ = L^* - \{\epsilon\}$?

Example:

 $L = \{ \omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is even} \}$ $L^+ = \{ \omega \in \Sigma^* \mid \text{the number of 1's in } \omega \text{ is even} \} = L_e^*$

Why?

 $L^* = L^+ \cup \{\varepsilon\}$?

LANGUAGES AND PROBLEMS

• Problem

Example: What are prime numbers > 20?

• Decision problem

- Problem with a YES/NO answer
- Example: Given a positive integer n, is n a prime number > 20?

• Language

Example: {n | n is a prime number > 20}

= {23, 29, 31, 37, ...}

LANGUAGE RECOGNITION AND PROBLEM

- A problem is represented by a set of strings of the input whose answer for the corresponding problem is "YES".
- a string is in a language = the answer of the corresponding problem for the string is "YES"
 - Let "Given a positive integer n, is n a prime number > 20?" be the problem P.
 - If a string represents an integer i in {m | m is a prime number > 20}, then the answer for the problem P for n = i is true.

COMMON MISCONCEPTION Beware

A LANGUAGE IS A SET.

AND, THERE IS ALSO A SET OF LANGUAGES.

A class of language

