

 Introduction

 Why do we study Theory of Computation ?

 Importance of Theory of Computation

Languages

Languages and Problems

 Sequence of mathematical operations ?

◦ What are, and are not, mathematical

operations?

 Sequence of well-defined operations

◦ How many operations ?

 The fewer, the better.

◦ Which operations ?

 The simpler, the better.

What is computable,

and what is not ?

Basis of
 Algorithm analysis

 Complexity theory

What a computer can

and cannot do

Are you trying to

write a non-existing

program?

 Can you make your

program more efficient?

What is easy, and what

is difficult, to compute
?

What is easy, and what

is hard for computers to

do?

 Is your cryptograpic
scheme safe?

Analysis of

algorithms

Complexity Theory

Cryptography

Compilers

Circuit design

 1936 Alan Turing invented the Turing

machine, and proved that there exists an

unsolvable problem.

 1940’s Stored-program computers were built.

 1943 McCulloch and Pitts invented finite

automata.

 1956 Kleene invented regular expressions

and proved the equivalence of regular

expression and finite automata.

 1956 Chomsky defined Chomsky hierarchy,

which organized languages recognized by

different automata into hierarchical classes.

 1959 Rabin and Scott introduced

nondeterministic finite automata and proved

its equivalence to (deterministic) finite

automata.

 1950’s-1960’s More works on languages,

grammars, and compilers

 1965 Hartmantis and Stearns defined time

complexity, and Lewis, Hartmantis and

Stearns defined space complexity.

 1971 Cook showed the first NP-complete

problem, the satisfiability prooblem.

 1972 Karp Showed many other NP-complete

problems.

 1976 Diffie and Helllman defined Modern

Cryptography based on NP-complete

problems.

 1978 Rivest, Shamir and Adelman proposed a

public-key encryption scheme, RSA.

 An alphabet is a finite, non-empty set of

symbols.

 {0,1 } is a binary alphabet.

 { A, B, …, Z, a, b, …, z } is an English

alphabet.

 A string over an alphabet  is a sequence

of any number of symbols from .

 0, 1, 11, 00, and 01101 are strings over {0, 1 }.

 Cat, CAT, and compute are strings over the

English alphabet.

 An empty string, denoted by , is a
string containing no symbol.

 is a string over any alphabet.

 The length of a string x, denoted by

length(x), is the number of positions

of symbols in the string.
Let Σ = {a, b, …, z}

length(automata) = 8

length(computation) = 11

length(ε) = 0

 x(i), denotes the symbol in the ith

position of a string x, for 1 i 

length(x).

Concatenation

Substring

Reversal

 The concatenation of strings x and
y, denoted by xy or x y, is a string z
such that:

 z(i) = x(i) for 1  i  length(x)

 z(i) = y(i) for
length(x)<ilength(x)+length(y)

 Example
 automatacomputation =

automatacomputation

 The concatenation of string x for n

times, where n0, is denoted by xn

 x0 = 

 x1 = x

 x2 = x x

 x3 = x x x

 …

 Let x and y be strings over an alphabet Σ

 The string x is a substring of y if there exist

strings w and z over Σ such that y = w x z.

 ε is a substring of every string.

 For every string x, x is a substring of x

itself.

Example

 ε, comput and computation are

substrings of computation.

Let x be a string over an alphabet Σ

The reversal of the string x, denoted

by x r, is a string such that

 if x is ε, then xr is ε.

 If a is in Σ, y is in Σ* and x = a y, then

xr = yr a.

 (automata)r

= (utomata)r a

= (tomata)r ua

= (omata)r tua

= (mata)r otua

= (ata)r motua

= (ta)r amotua

= (a)r tamotua

= ()r atamotua

= atamotua

 The set of strings created from any

number (0 or 1 or …) of symbols in
an alphabet  is denoted by *.

 That is, * = i=


0
 i

 Let = {0, 1}.

 * = {, 0, 1, 00, 01, 10, 11, 000, 001,

010, 011, … }.

 The set of strings created from at least one
symbol (1 or 2 or …) in an alphabet  is

denoted by +.

 That is, + = i=


1
 i

 = i=0..
 i - 0

 =  i=0..
 i - {}

 Let = {0, 1}.+ = {0, 1, 00, 01, 10, 11, 000,

001, 010, 011, … }.

 * and + are infinite sets.

 A language over an alphabet Σ is a

set of strings over Σ.

 Let Σ = {0, 1} be the alphabet.

 Le = {Σ* | the number of 1’s in  is

even}.

 , 0, 00, 11, 000, 110, 101, 011, 0000, 1100,

1010, 1001, 0110, 0101, 0011, … are in Le

 Complementation

 Union

 Intersection

 Concatenation

 Reversal

 Closure

Let L be a language over an alphabet Σ.

The complementation of L, denoted byL,
is Σ*–L.

Example:

Let Σ = {0, 1} be the alphabet.

Le = {Σ* | the number of 1’s in  is even}.

Le= {Σ* | the number of 1’s in  is not
even}.

Le= {Σ* | the number of 1’s in  is odd}.

Let L1 and L2 be languages over an

alphabet Σ.

 The union of L1 and L2, denoted by

L1L2, is {x | x is in L1 or L2}.

Example:

{x{0,1}*|x begins with 0}  {x{0,1}*|x

ends with 0}

 = {x  {0,1}*| x begins or ends with 0}

Let L1 and L2 be languages over an

alphabet Σ.

 The intersection of L1 and L2,

denoted by L1L2, is { x | x is in L1

and L2}.

Example:

{ x{0,1}*| x begins with 0}  { x{0,1}*| x

ends with 0}

 = { x{0,1}*| x begins and ends with 0}

Let L1 and L2 be languages over an alphabet Σ.

 The concatenation of L1 and L2, denoted by
L1L2, is {w1w2| w1 is in L1 and w2 is in L2}.

Example

 { x  {0,1}*| x begins with 0}{x  {0,1}*| x ends

with 0}

= { x  {0,1}*| x begins and ends with 0 and
length(x)  2}

 { x  {0,1}*| x ends with 0}{x  {0,1}*| x begins

with 0}

= { x  {0,1}*| x has 00 as a substring}

Let L be a language over an alphabet Σ.

The reversal of L, denoted by Lr, is {wr| w is

in L}.

Example

{x  {0,1}*| x begins with 0} r

 = {x  {0,1}*| x ends with 0}

{x  {0,1}*| x has 00 as a substring} r

 = {x  {0,1}*| x has 00 as a substring}

Let L be a language over an alphabet Σ.

 The Kleene’s closure of L, denoted by L*, is {x |

for an integer n  0 x = x1 x2 … xn and x1, x2 , …, xn

are in L}.

 That is, L* = i


= 0 L
i

Example: Let Σ = {0,1} and

 Le = {Σ* | the number of 1’s in  is even}

 Le* = {Σ* | the number of 1’s in  is even}

 (Le)* = {Σ*| the number of 1’s in  is odd}*

 = {Σ*| the number of 1’s in  > 0}

Let L be a language over an alphabet Σ.

 The closure of L, denoted by L+, is { x |for
an integer n  1, x = x1x2…xn and x1, x2 , …,
xn are in L}

That is, L+ = i


= 1 L
i

Example:

Let Σ = {0, 1} be the alphabet.

Le = {Σ* | the number of 1’s in  is even}

Le
+

= {Σ* | the number of 1’s in  is
even} = Le*

L+ = L*  {ε} ?

Example:

L = {Σ* | the number of 1’s in  is even}

L+

= {Σ* | the number of 1’s in  is even} =

Le*

Why?

L* = L+  {ε} ?

 Problem

 Example: What are prime numbers > 20?

Decision problem

 Problem with a YES/NO answer

 Example: Given a positive integer n, is n a prime

number > 20?

 Language

 Example: {n | n is a prime number > 20}

 = {23, 29, 31, 37, …}

 A problem is represented by a set of strings

of the input whose answer for the

corresponding problem is “YES”.

 a string is in a language = the answer of the

corresponding problem for the string is “YES”

 Let “Given a positive integer n, is n a prime

number > 20?” be the problem P.

 If a string represents an integer i in {m | m is a

prime number > 20} , then the answer for the

problem P for n = i is true.

Beware

1

01

001

0001
00001

1

10

100

1000
10000

L1 L2

1

01

001

0001
00001

L1

1

10

100

1000
10000

L2

L1
L2

A class of language

