

 Introduction

 Why do we study Theory of Computation ?

 Importance of Theory of Computation

Languages

Languages and Problems

 Sequence of mathematical operations ?

◦ What are, and are not, mathematical

operations?

 Sequence of well-defined operations

◦ How many operations ?

 The fewer, the better.

◦ Which operations ?

 The simpler, the better.

What is computable,

and what is not ?

Basis of
 Algorithm analysis

 Complexity theory

What a computer can

and cannot do

Are you trying to

write a non-existing

program?

 Can you make your

program more efficient?

What is easy, and what

is difficult, to compute
?

What is easy, and what

is hard for computers to

do?

 Is your cryptograpic
scheme safe?

Analysis of

algorithms

Complexity Theory

Cryptography

Compilers

Circuit design

 1936 Alan Turing invented the Turing

machine, and proved that there exists an

unsolvable problem.

 1940’s Stored-program computers were built.

 1943 McCulloch and Pitts invented finite

automata.

 1956 Kleene invented regular expressions

and proved the equivalence of regular

expression and finite automata.

 1956 Chomsky defined Chomsky hierarchy,

which organized languages recognized by

different automata into hierarchical classes.

 1959 Rabin and Scott introduced

nondeterministic finite automata and proved

its equivalence to (deterministic) finite

automata.

 1950’s-1960’s More works on languages,

grammars, and compilers

 1965 Hartmantis and Stearns defined time

complexity, and Lewis, Hartmantis and

Stearns defined space complexity.

 1971 Cook showed the first NP-complete

problem, the satisfiability prooblem.

 1972 Karp Showed many other NP-complete

problems.

 1976 Diffie and Helllman defined Modern

Cryptography based on NP-complete

problems.

 1978 Rivest, Shamir and Adelman proposed a

public-key encryption scheme, RSA.

 An alphabet is a finite, non-empty set of

symbols.

 {0,1 } is a binary alphabet.

 { A, B, …, Z, a, b, …, z } is an English

alphabet.

 A string over an alphabet is a sequence

of any number of symbols from .

 0, 1, 11, 00, and 01101 are strings over {0, 1 }.

 Cat, CAT, and compute are strings over the

English alphabet.

 An empty string, denoted by , is a
string containing no symbol.

 is a string over any alphabet.

 The length of a string x, denoted by

length(x), is the number of positions

of symbols in the string.
Let Σ = {a, b, …, z}

length(automata) = 8

length(computation) = 11

length(ε) = 0

 x(i), denotes the symbol in the ith

position of a string x, for 1 i

length(x).

Concatenation

Substring

Reversal

 The concatenation of strings x and
y, denoted by xy or x y, is a string z
such that:

 z(i) = x(i) for 1 i length(x)

 z(i) = y(i) for
length(x)<ilength(x)+length(y)

 Example
 automatacomputation =

automatacomputation

 The concatenation of string x for n

times, where n0, is denoted by xn

 x0 =

 x1 = x

 x2 = x x

 x3 = x x x

 …

 Let x and y be strings over an alphabet Σ

 The string x is a substring of y if there exist

strings w and z over Σ such that y = w x z.

 ε is a substring of every string.

 For every string x, x is a substring of x

itself.

Example

 ε, comput and computation are

substrings of computation.

Let x be a string over an alphabet Σ

The reversal of the string x, denoted

by x r, is a string such that

 if x is ε, then xr is ε.

 If a is in Σ, y is in Σ* and x = a y, then

xr = yr a.

 (automata)r

= (utomata)r a

= (tomata)r ua

= (omata)r tua

= (mata)r otua

= (ata)r motua

= (ta)r amotua

= (a)r tamotua

= ()r atamotua

= atamotua

 The set of strings created from any

number (0 or 1 or …) of symbols in
an alphabet is denoted by *.

 That is, * = i=

0
 i

 Let = {0, 1}.

 * = {, 0, 1, 00, 01, 10, 11, 000, 001,

010, 011, … }.

 The set of strings created from at least one
symbol (1 or 2 or …) in an alphabet is

denoted by +.

 That is, + = i=

1
 i

 = i=0..
 i - 0

 = i=0..
 i - {}

 Let = {0, 1}.+ = {0, 1, 00, 01, 10, 11, 000,

001, 010, 011, … }.

 * and + are infinite sets.

 A language over an alphabet Σ is a

set of strings over Σ.

 Let Σ = {0, 1} be the alphabet.

 Le = {Σ* | the number of 1’s in is

even}.

 , 0, 00, 11, 000, 110, 101, 011, 0000, 1100,

1010, 1001, 0110, 0101, 0011, … are in Le

 Complementation

 Union

 Intersection

 Concatenation

 Reversal

 Closure

Let L be a language over an alphabet Σ.

The complementation of L, denoted byL,
is Σ*–L.

Example:

Let Σ = {0, 1} be the alphabet.

Le = {Σ* | the number of 1’s in is even}.

Le= {Σ* | the number of 1’s in is not
even}.

Le= {Σ* | the number of 1’s in is odd}.

Let L1 and L2 be languages over an

alphabet Σ.

 The union of L1 and L2, denoted by

L1L2, is {x | x is in L1 or L2}.

Example:

{x{0,1}*|x begins with 0} {x{0,1}*|x

ends with 0}

 = {x {0,1}*| x begins or ends with 0}

Let L1 and L2 be languages over an

alphabet Σ.

 The intersection of L1 and L2,

denoted by L1L2, is { x | x is in L1

and L2}.

Example:

{ x{0,1}*| x begins with 0} { x{0,1}*| x

ends with 0}

 = { x{0,1}*| x begins and ends with 0}

Let L1 and L2 be languages over an alphabet Σ.

 The concatenation of L1 and L2, denoted by
L1L2, is {w1w2| w1 is in L1 and w2 is in L2}.

Example

 { x {0,1}*| x begins with 0}{x {0,1}*| x ends

with 0}

= { x {0,1}*| x begins and ends with 0 and
length(x) 2}

 { x {0,1}*| x ends with 0}{x {0,1}*| x begins

with 0}

= { x {0,1}*| x has 00 as a substring}

Let L be a language over an alphabet Σ.

The reversal of L, denoted by Lr, is {wr| w is

in L}.

Example

{x {0,1}*| x begins with 0} r

 = {x {0,1}*| x ends with 0}

{x {0,1}*| x has 00 as a substring} r

 = {x {0,1}*| x has 00 as a substring}

Let L be a language over an alphabet Σ.

 The Kleene’s closure of L, denoted by L*, is {x |

for an integer n 0 x = x1 x2 … xn and x1, x2 , …, xn

are in L}.

 That is, L* = i

= 0 L
i

Example: Let Σ = {0,1} and

 Le = {Σ* | the number of 1’s in is even}

 Le* = {Σ* | the number of 1’s in is even}

 (Le)* = {Σ*| the number of 1’s in is odd}*

 = {Σ*| the number of 1’s in > 0}

Let L be a language over an alphabet Σ.

 The closure of L, denoted by L+, is { x |for
an integer n 1, x = x1x2…xn and x1, x2 , …,
xn are in L}

That is, L+ = i

= 1 L
i

Example:

Let Σ = {0, 1} be the alphabet.

Le = {Σ* | the number of 1’s in is even}

Le
+

= {Σ* | the number of 1’s in is
even} = Le*

L+ = L* {ε} ?

Example:

L = {Σ* | the number of 1’s in is even}

L+

= {Σ* | the number of 1’s in is even} =

Le*

Why?

L* = L+ {ε} ?

 Problem

 Example: What are prime numbers > 20?

Decision problem

 Problem with a YES/NO answer

 Example: Given a positive integer n, is n a prime

number > 20?

 Language

 Example: {n | n is a prime number > 20}

 = {23, 29, 31, 37, …}

 A problem is represented by a set of strings

of the input whose answer for the

corresponding problem is “YES”.

 a string is in a language = the answer of the

corresponding problem for the string is “YES”

 Let “Given a positive integer n, is n a prime

number > 20?” be the problem P.

 If a string represents an integer i in {m | m is a

prime number > 20} , then the answer for the

problem P for n = i is true.

Beware

1

01

001

0001
00001

1

10

100

1000
10000

L1 L2

1

01

001

0001
00001

L1

1

10

100

1000
10000

L2

L1
L2

A class of language

