


 

 Introduction 

 Why do we study Theory of Computation ? 

 Importance of Theory of Computation 

Languages 

Languages and Problems 

 



 Sequence of mathematical operations ? 

◦ What are, and are not, mathematical 

operations? 

 Sequence of well-defined operations 

◦ How many operations ? 

 The fewer, the better. 

◦ Which operations ? 

 The simpler, the better. 



What is computable, 

and what is not ? 

 

 

 

Basis of 
 Algorithm analysis 

 Complexity theory 

What a computer can 

and cannot do 

Are you trying to 

write a non-existing 

program? 

 

 

 Can you make your 

program more efficient? 



What is easy, and what 

is difficult, to compute 
? 

What is easy, and what 

is hard for computers to 

do? 

 Is your cryptograpic 
scheme safe? 



Analysis of 

algorithms 

Complexity Theory 

Cryptography 

Compilers 

Circuit design 

 



 1936 Alan Turing invented the Turing 

machine, and proved that there exists an 

unsolvable problem. 

 1940’s Stored-program computers were built.  

 1943 McCulloch and Pitts invented finite 

automata. 

 1956 Kleene invented regular expressions 

and proved the equivalence of regular 

expression and finite automata. 



 1956 Chomsky defined Chomsky hierarchy, 

which organized languages recognized by 

different automata into hierarchical classes. 

 1959 Rabin and Scott introduced 

nondeterministic finite automata and proved 

its equivalence to (deterministic) finite 

automata. 

 1950’s-1960’s More works on languages, 

grammars, and compilers 



 1965 Hartmantis and Stearns defined time 

complexity, and Lewis, Hartmantis and 

Stearns defined space complexity. 

 1971 Cook showed the first NP-complete 

problem, the satisfiability prooblem. 

 1972 Karp Showed many other NP-complete 

problems. 



 1976 Diffie and Helllman defined Modern 

Cryptography based on NP-complete 

problems. 

 1978 Rivest, Shamir and Adelman proposed a 

public-key encryption scheme, RSA. 



 An alphabet is a finite, non-empty set of 

symbols.  

 {0,1 } is a binary alphabet. 

 { A, B, …, Z, a, b, …, z } is an English 

alphabet. 

 A string over an alphabet  is a sequence 

of any number of symbols from . 

 0, 1, 11, 00, and 01101 are strings over {0, 1 }. 

 Cat, CAT, and compute are strings over the 

English alphabet. 



 An empty string, denoted by , is a 
string containing no symbol. 

 is a string over any alphabet. 



 The length of a string x, denoted by 

length(x), is the number of positions 

of symbols in the string. 
Let Σ = {a, b, …, z} 

length(automata) = 8 

length(computation) = 11 

length(ε) = 0 

 x(i), denotes the symbol in the ith 

position of a string x, for 1 i  

length(x). 



Concatenation 

Substring 

Reversal 



 The concatenation of strings x and 
y, denoted by xy or x y, is a string z 
such that:  

 z(i) = x(i) for 1  i  length(x) 

 z(i) = y(i) for 
length(x)<ilength(x)+length(y) 

 

 Example 
 automatacomputation = 

automatacomputation  



 The concatenation of string x for n 

times, where n0, is denoted by xn 

 x0 =  

 x1 = x 

 x2 = x x 

 x3 = x x x 

  … 



 Let x and y be strings over an alphabet Σ 

 The string x is a substring of y if there exist 

strings w and z over Σ such that y = w x z. 

 ε is a substring of every string. 

 For every string x, x is a substring of x 

itself. 

Example 

 ε, comput and computation are 

substrings of computation. 



Let x be a string over an alphabet Σ 

The reversal of the string x, denoted 

by x r, is a string such that  

 if x is ε, then xr is ε. 

 If a is in Σ, y is in Σ* and x = a y, then 

xr = yr a. 



   (automata)r    

= (utomata)r a   

= (tomata)r ua 

= (omata)r tua   

= (mata)r otua   

= (ata)r motua 

= (ta)r amotua   

= (a)r tamotua    

= ()r atamotua 

=  atamotua  



 The set of strings created from any 

number (0 or 1 or …) of symbols in 
an alphabet  is denoted by *. 

 That is, * = i=


0
 i 

 Let = {0, 1}.   

 * = {, 0, 1, 00, 01, 10, 11, 000, 001, 

010, 011, … }.  



 The set of strings created from at least one  
symbol (1 or 2 or …) in an alphabet  is 

denoted by +. 

 That is, +  =  i=


1
 i   

 =  i=0..
 i - 0  

 =   i=0..
 i - {} 

 Let = {0, 1}.+ = {0, 1, 00, 01, 10, 11, 000, 

001, 010, 011, … }. 

 * and + are infinite sets. 



 A language over an alphabet Σ is a 

set of strings over Σ. 

 Let Σ = {0, 1} be the alphabet. 

 Le = {Σ* | the number  of 1’s in  is 

even}. 

 , 0, 00, 11, 000, 110, 101, 011, 0000, 1100, 

1010, 1001, 0110, 0101, 0011, … are in Le 



 Complementation 

 Union 

 Intersection 

 Concatenation 

 Reversal 

 Closure 



Let L be a language over an alphabet Σ.   

The complementation of L, denoted byL, 
is Σ*–L. 

 

Example: 

Let Σ = {0, 1} be the alphabet. 

Le = {Σ* | the number  of 1’s in  is even}. 

Le= {Σ* | the number  of 1’s in  is not 
even}. 

Le= {Σ* | the number  of 1’s in  is odd}. 



Let L1 and L2 be languages over an 

alphabet Σ.   

 The union of L1 and L2,   denoted by 

L1L2,   is {x | x is in L1 or L2}. 

Example: 

{x{0,1}*|x begins with 0}  {x{0,1}*|x 

ends with 0}  

 = {x  {0,1}*| x begins or ends with 0} 



Let L1 and L2 be languages over an 

alphabet Σ. 

 The intersection of L1 and L2, 

denoted by L1L2, is { x | x is in L1 

and L2}. 

Example: 

{ x{0,1}*| x begins with 0}  { x{0,1}*| x 

ends with 0}  

 = { x{0,1}*| x begins and ends with 0} 



Let L1 and L2 be languages over an alphabet Σ.   

 The concatenation of L1 and L2, denoted by 
L1L2, is {w1w2| w1 is in L1 and w2 is in L2}. 

Example 

   { x  {0,1}*| x begins with 0}{x  {0,1}*| x ends 

with 0}  

= { x  {0,1}*| x begins and ends with 0 and 
length(x)  2}  

    { x  {0,1}*| x ends with 0}{x  {0,1}*| x begins 

with 0}  

= { x  {0,1}*| x has 00 as a substring}  



Let L be a language over an alphabet Σ.   

The reversal of L, denoted by Lr, is {wr| w is 

in L}. 

Example 

{x  {0,1}*| x begins with 0} r 

 = {x  {0,1}*| x ends with 0}  

{x  {0,1}*| x has 00 as a substring} r  

 = {x  {0,1}*| x has 00 as a substring}  



Let L be a language over an alphabet Σ.   

 The Kleene’s closure of L, denoted by L*, is {x | 

for an integer n  0 x = x1 x2 … xn and x1, x2 , …, xn 

are in L}. 

 That is, L* =  i


= 0   L
i 

Example: Let Σ = {0,1} and  

 Le = {Σ* | the number of 1’s in  is even} 

      Le* = {Σ* | the number of 1’s in  is even} 

  (Le)* = {Σ*| the number of 1’s in  is odd}*  

            = {Σ*| the number of 1’s in  > 0} 



Let L be a language over an alphabet Σ.   

 The closure of L, denoted by L+, is { x |for 
an integer n  1, x = x1x2…xn and x1, x2 , …, 
xn are in L} 

That is, L+ =  i


= 1   L
i 

Example: 

Let Σ = {0, 1} be the alphabet. 

Le = {Σ* | the number  of 1’s in  is even} 

Le
+

 
= {Σ* | the number  of 1’s in  is 
even} = Le*  



L+ = L*   {ε} ? 

 

Example: 

L = {Σ* | the number  of 1’s in  is even}  

L+
 
= {Σ* | the number  of 1’s in  is even} = 

Le*  

 

Why?  

L* = L+  {ε} ? 



 Problem 

 Example: What are prime numbers > 20? 

Decision problem 

 Problem with a YES/NO answer 

 Example: Given a positive integer n, is n a prime 

number > 20? 

 Language 

 Example: {n | n is a prime number > 20}  

             =  {23, 29, 31, 37, …} 



 A problem is represented by a set of strings 

of the input whose answer for the 

corresponding problem is “YES”. 

 a string is in a language =  the answer of the 

corresponding problem for the string is “YES” 

 Let “Given a positive integer n, is n a prime 

number > 20?” be the problem P. 

 If a string represents an integer i in {m | m is a 

prime number > 20} , then the answer for the 

problem P for n = i is true. 



Beware 
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