


 

 Introduction 

 Why do we study Theory of Computation ? 

 Importance of Theory of Computation 

Languages 

Languages and Problems 

 



 Sequence of mathematical operations ? 

◦ What are, and are not, mathematical 

operations? 

 Sequence of well-defined operations 

◦ How many operations ? 

 The fewer, the better. 

◦ Which operations ? 

 The simpler, the better. 



What is computable, 

and what is not ? 

 

 

 

Basis of 
 Algorithm analysis 

 Complexity theory 

What a computer can 

and cannot do 

Are you trying to 

write a non-existing 

program? 

 

 

 Can you make your 

program more efficient? 



What is easy, and what 

is difficult, to compute 
? 

What is easy, and what 

is hard for computers to 

do? 

 Is your cryptograpic 
scheme safe? 



Analysis of 

algorithms 

Complexity Theory 

Cryptography 

Compilers 

Circuit design 

 



 1936 Alan Turing invented the Turing 

machine, and proved that there exists an 

unsolvable problem. 

 1940’s Stored-program computers were built.  

 1943 McCulloch and Pitts invented finite 

automata. 

 1956 Kleene invented regular expressions 

and proved the equivalence of regular 

expression and finite automata. 



 1956 Chomsky defined Chomsky hierarchy, 

which organized languages recognized by 

different automata into hierarchical classes. 

 1959 Rabin and Scott introduced 

nondeterministic finite automata and proved 

its equivalence to (deterministic) finite 

automata. 

 1950’s-1960’s More works on languages, 

grammars, and compilers 



 1965 Hartmantis and Stearns defined time 

complexity, and Lewis, Hartmantis and 

Stearns defined space complexity. 

 1971 Cook showed the first NP-complete 

problem, the satisfiability prooblem. 

 1972 Karp Showed many other NP-complete 

problems. 



 1976 Diffie and Helllman defined Modern 

Cryptography based on NP-complete 

problems. 

 1978 Rivest, Shamir and Adelman proposed a 

public-key encryption scheme, RSA. 



 An alphabet is a finite, non-empty set of 

symbols.  

 {0,1 } is a binary alphabet. 

 { A, B, …, Z, a, b, …, z } is an English 

alphabet. 

 A string over an alphabet  is a sequence 

of any number of symbols from . 

 0, 1, 11, 00, and 01101 are strings over {0, 1 }. 

 Cat, CAT, and compute are strings over the 

English alphabet. 



 An empty string, denoted by , is a 
string containing no symbol. 

 is a string over any alphabet. 



 The length of a string x, denoted by 

length(x), is the number of positions 

of symbols in the string. 
Let Σ = {a, b, …, z} 

length(automata) = 8 

length(computation) = 11 

length(ε) = 0 

 x(i), denotes the symbol in the ith 

position of a string x, for 1 i  

length(x). 



Concatenation 

Substring 

Reversal 



 The concatenation of strings x and 
y, denoted by xy or x y, is a string z 
such that:  

 z(i) = x(i) for 1  i  length(x) 

 z(i) = y(i) for 
length(x)<ilength(x)+length(y) 

 

 Example 
 automatacomputation = 

automatacomputation  



 The concatenation of string x for n 

times, where n0, is denoted by xn 

 x0 =  

 x1 = x 

 x2 = x x 

 x3 = x x x 

  … 



 Let x and y be strings over an alphabet Σ 

 The string x is a substring of y if there exist 

strings w and z over Σ such that y = w x z. 

 ε is a substring of every string. 

 For every string x, x is a substring of x 

itself. 

Example 

 ε, comput and computation are 

substrings of computation. 



Let x be a string over an alphabet Σ 

The reversal of the string x, denoted 

by x r, is a string such that  

 if x is ε, then xr is ε. 

 If a is in Σ, y is in Σ* and x = a y, then 

xr = yr a. 



   (automata)r    

= (utomata)r a   

= (tomata)r ua 

= (omata)r tua   

= (mata)r otua   

= (ata)r motua 

= (ta)r amotua   

= (a)r tamotua    

= ()r atamotua 

=  atamotua  



 The set of strings created from any 

number (0 or 1 or …) of symbols in 
an alphabet  is denoted by *. 

 That is, * = i=


0
 i 

 Let = {0, 1}.   

 * = {, 0, 1, 00, 01, 10, 11, 000, 001, 

010, 011, … }.  



 The set of strings created from at least one  
symbol (1 or 2 or …) in an alphabet  is 

denoted by +. 

 That is, +  =  i=


1
 i   

 =  i=0..
 i - 0  

 =   i=0..
 i - {} 

 Let = {0, 1}.+ = {0, 1, 00, 01, 10, 11, 000, 

001, 010, 011, … }. 

 * and + are infinite sets. 



 A language over an alphabet Σ is a 

set of strings over Σ. 

 Let Σ = {0, 1} be the alphabet. 

 Le = {Σ* | the number  of 1’s in  is 

even}. 

 , 0, 00, 11, 000, 110, 101, 011, 0000, 1100, 

1010, 1001, 0110, 0101, 0011, … are in Le 



 Complementation 

 Union 

 Intersection 

 Concatenation 

 Reversal 

 Closure 



Let L be a language over an alphabet Σ.   

The complementation of L, denoted byL, 
is Σ*–L. 

 

Example: 

Let Σ = {0, 1} be the alphabet. 

Le = {Σ* | the number  of 1’s in  is even}. 

Le= {Σ* | the number  of 1’s in  is not 
even}. 

Le= {Σ* | the number  of 1’s in  is odd}. 



Let L1 and L2 be languages over an 

alphabet Σ.   

 The union of L1 and L2,   denoted by 

L1L2,   is {x | x is in L1 or L2}. 

Example: 

{x{0,1}*|x begins with 0}  {x{0,1}*|x 

ends with 0}  

 = {x  {0,1}*| x begins or ends with 0} 



Let L1 and L2 be languages over an 

alphabet Σ. 

 The intersection of L1 and L2, 

denoted by L1L2, is { x | x is in L1 

and L2}. 

Example: 

{ x{0,1}*| x begins with 0}  { x{0,1}*| x 

ends with 0}  

 = { x{0,1}*| x begins and ends with 0} 



Let L1 and L2 be languages over an alphabet Σ.   

 The concatenation of L1 and L2, denoted by 
L1L2, is {w1w2| w1 is in L1 and w2 is in L2}. 

Example 

   { x  {0,1}*| x begins with 0}{x  {0,1}*| x ends 

with 0}  

= { x  {0,1}*| x begins and ends with 0 and 
length(x)  2}  

    { x  {0,1}*| x ends with 0}{x  {0,1}*| x begins 

with 0}  

= { x  {0,1}*| x has 00 as a substring}  



Let L be a language over an alphabet Σ.   

The reversal of L, denoted by Lr, is {wr| w is 

in L}. 

Example 

{x  {0,1}*| x begins with 0} r 

 = {x  {0,1}*| x ends with 0}  

{x  {0,1}*| x has 00 as a substring} r  

 = {x  {0,1}*| x has 00 as a substring}  



Let L be a language over an alphabet Σ.   

 The Kleene’s closure of L, denoted by L*, is {x | 

for an integer n  0 x = x1 x2 … xn and x1, x2 , …, xn 

are in L}. 

 That is, L* =  i


= 0   L
i 

Example: Let Σ = {0,1} and  

 Le = {Σ* | the number of 1’s in  is even} 

      Le* = {Σ* | the number of 1’s in  is even} 

  (Le)* = {Σ*| the number of 1’s in  is odd}*  

            = {Σ*| the number of 1’s in  > 0} 



Let L be a language over an alphabet Σ.   

 The closure of L, denoted by L+, is { x |for 
an integer n  1, x = x1x2…xn and x1, x2 , …, 
xn are in L} 

That is, L+ =  i


= 1   L
i 

Example: 

Let Σ = {0, 1} be the alphabet. 

Le = {Σ* | the number  of 1’s in  is even} 

Le
+

 
= {Σ* | the number  of 1’s in  is 
even} = Le*  



L+ = L*   {ε} ? 

 

Example: 

L = {Σ* | the number  of 1’s in  is even}  

L+
 
= {Σ* | the number  of 1’s in  is even} = 

Le*  

 

Why?  

L* = L+  {ε} ? 



 Problem 

 Example: What are prime numbers > 20? 

Decision problem 

 Problem with a YES/NO answer 

 Example: Given a positive integer n, is n a prime 

number > 20? 

 Language 

 Example: {n | n is a prime number > 20}  

             =  {23, 29, 31, 37, …} 



 A problem is represented by a set of strings 

of the input whose answer for the 

corresponding problem is “YES”. 

 a string is in a language =  the answer of the 

corresponding problem for the string is “YES” 

 Let “Given a positive integer n, is n a prime 

number > 20?” be the problem P. 

 If a string represents an integer i in {m | m is a 

prime number > 20} , then the answer for the 

problem P for n = i is true. 



Beware 
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