COURSE: THEORY OF AUTOMATA COMPUTATION

- Introduction
- Why do we study Theory of Computation ?
- Importance of Theory of Computation
- Languages
- Languages and Problems

WHAT IS COMPUTATION?

- Sequence of mathematical operations ?

What are, and are not, mathematical operations?

- Sequence of well-defined operations How many operations?

The fewer, the better.
Which operations?
The simpler, the better.

WHAT DO WE STUDY IN THEORY OF COMPUTATION?

- What is computable, and what is not ?
- What a computer can and cannot do
- Are you trying to write a non-existind program?
- Basis of
- Algorithm analysis
- Complexity theory
- Can you make your program more efficier

WHAT DO WE STUDY IN COMPLEXITY THEORY?

- What is easy, and what is difficult, to compute ?
- What is easy, and what is hard for computers to do?
- Is your cryptograpic scheme safe?

APPLICATIONS IN COMPUTER

 SCIENGE-Analysis of algorithms
○Complexity Theory
○Cryptography
-Compilers
-Circuit design

HISTORY OF THEORY OF

- 1936 Alan Turing invented the Turing machine, and proved that there exists an unsolvable problem.
- 1940's Stored-program computers were built.
- 1943 McCulloch and Pitts invented finite automata.
- 1956 Kleene invented regular expressions and proved the equivalence of regular expression and finite automata.

HISTORY OF THEORY OF

- 1956 Chomsky defined Chomsky hierarchy, which organized languages recognized by different automata into hierarchical classes.
- 1959 Rabin and Scott introduced nondeterministic finite automata and proved its equivalence to (deterministic) finite automata.
- 1950's-1960's More works on languages, grammars, and compilers

HISTORY OF THEORY OF

COMPUTATION

- 1965 Hartmantis and Stearns defined time complexity, and Lewis, Hartmantis and Stearns defined space complexity.
- 1971 Cook showed the first NP-complete problem, the satisfiability prooblem.
- 1972 Karp Showed many other NP-complete problems.

HISTORY OF THEORY OF

 COMPUTATION- 1976 Diffie and Helllman defined Modern Cryptography based on NP-complete problems.
- 1978 Rivest, Shamir and Adelman proposed a public-key encryption scheme, RSA.

ALPHABET AND STRINGS

- An alphabet is a finite, non-empty set of symbols.
- $\{0,1\}$ is a binary alphabet.
- $\{A, B, \ldots, Z, a, b, \ldots, z\}$ is an English alphabet.
- A string over an alphabet Σ is a sequence of any number of symbols from Σ.
- $0,1,11,00$, and 01101 are strings over $\{0,1\}$.
- Cat, CAT, and compute are strings over the English alphabet.

EMPTY STRING

- An empty string, denoted by ε, is a string containing no symbol.
- ε is a string over any alphabet.

LENGTH

- The length of a string x, denoted by length(x), is the number of positions of symbols in the string.
Let $\Sigma=\{a, b, \ldots, z\}$
length(automata) $=8$
length $($ computation $)=11$
length $(\varepsilon)=0$
- $x(i)$, denotes the symbol in the $i^{\text {th }}$ position of a string x, for $1 \leq i \leq$ length (x).

STRING-OPERATIONS

○Concatenation
๑Substring
๑Reversal

CONCATENATION

- The concatenation of strings x and y, denoted by $x \cdot y$ or $x y$, is a string z such that:
- $z(i)=x(i)$ for $1 \leq i \leq \operatorname{length}(x)$
$z(i)=y(i)$ for
length $(x)<i \leq l e n g t h(x)+\operatorname{length}(y)$
- Example
- automata \cdot computation $=$ automatacomputation

CONGATENATION

The concatenation of string x for n times, where $n \geq 0$, is denoted by x^{n}

- $x^{0}=\varepsilon$
- $x^{1}=x$
- $x^{2}=x x$
- $x^{3}=x x x$

SUBSTRING

Let x and y be strings over an alphabet Σ
The string x is a substring of y if there exist strings w and z over Σ such that $y=w x z$.

- ε is a substring of every string.
- For every string x, x is a substring of x itself.

Example

- ε, comput and computation are substrings of computation.

REVERSAL

Let x be a string over an alphabet Σ
The reversal of the string x, denoted by x^{r}, is a string such that

- if x is ε, then x^{r} is ε.
- If a is in Σ, y is in Σ^{*} and $x=a y$, then $x^{r}=y^{r} a$.

EXAMPLE OF REVERSAL

$$
\begin{aligned}
& (\text { automata })^{r} \\
= & (\text { utomata })^{r} a \\
= & (\text { tomata })^{r} \text { ua } \\
= & (\text { omata })^{r} \text { tua } \\
= & \left(\text { mata }^{r}\right. \text { otua } \\
= & (\text { ata })^{r} \text { motua } \\
= & (\text { ta })^{r} \text { amotua } \\
= & (\text { a })^{r} \text { tamotua } \\
= & \left(\varepsilon^{r}\right. \text { atamotua } \\
= & \text { atamotua }
\end{aligned}
$$

- The set of strings created from any number (0 or 1 or ...) of symbols in an alphabet Σ is denoted by Σ^{*}.
- That is, $\Sigma^{*}=\cup_{i=}^{\infty}{ }_{0} \Sigma^{i}$

$$
\begin{aligned}
= & \text { Let } \Sigma=\{0,1\} . \\
= & \Sigma^{*}=\{\varepsilon, 0,1,00,01,10,11,000,001, \\
& 010,011, \ldots\} .
\end{aligned}
$$

- The set of strings created from at least one symbol (1 or 2 or ...) in an alphabet Σ is denoted by Σ^{+}.
- That is, $\Sigma^{+}=\cup_{i=1}^{\infty} \Sigma^{i}$

$$
\begin{aligned}
& =\cup_{i=0 . . \infty} \Sigma^{i}-\Sigma^{0} \\
& =\cup_{i=0 . . \infty} \Sigma^{i}-\{\varepsilon\}
\end{aligned}
$$

- Let $\Sigma=\{\mathbf{0}, \mathbf{1}\} . \Sigma^{+}=\{0,1,00,01,10,11,000$, 001, 010, 011, ... $\}$.
Σ^{*} and Σ^{+}are infinite sets.

LANGUAGES

- A language over an alphabet Σ is a set of strings over Σ.
- Let $\Sigma=\{0,1\}$ be the alphabet.
- $L_{e}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of l 's in ω is even\}.
- $\varepsilon, 0,00,11,000,110,101,011,0000,1100$, 1010, 1001, 0110, 0101, 0011, ... are in L_{e}

OPERATIONS ON LANGUAGES

- Complementation
- Union
- Intersection
- Concatenation
- Reversal
- Closure

COMPLEMENTATION

Let L be a language over an alphabet Σ. The complementation of L, denoted by \bar{L}, is $\Sigma^{*}-L$.

Example:
Let $\Sigma=\{0,1\}$ be the alphabet.
$L_{e}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is even $\}$.
$\bar{L}_{e}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is not even\}.
$\bar{L}_{e}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is odd $\}$.

UNION

Let L_{1} and L_{2} be languages over an alphabet Σ.

The union of L_{1} and L_{2}, denoted by $L_{1} \cup L_{2}, \quad$ is $\left\{x \mid x\right.$ is in L_{1} or $\left.L_{2}\right\}$.

Example:

$\left\{x \in\{0,1\}^{*} \mid x\right.$ begins with 0$\} \cup\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ begins or ends with 0$\}$

INTERSECTION

Let L_{1} and L_{2} be languages over an alphabet Σ.
The intersection of L_{1} and L_{2}, denoted by $L_{l} \cap L_{2}$, is $\left\{x \mid x\right.$ is in L_{1} and $\left.L_{2}\right\}$.

Example:

$\left\{x \in\{0,1\}^{*} \mid x\right.$ begins with 0$\} \cap\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\}$

$$
=\left\{x \in\{0,1\}^{*} \mid x \text { begins and ends with } 0\right\}
$$

CONGATENATION

Let L_{1} and L_{2} be languages over an alphabet Σ.
The concatenation of L_{1} and L_{2}, denoted by $L_{l} \cdot L_{2}$, is $\left\{w_{1} \cdot w_{2} \mid w_{1}\right.$ is in L_{1} and w_{2} is in $\left.L_{2}\right\}$.
Example
$\left\{x \in\{0,1\}^{*} \mid x\right.$ begins with 0$\} \cdot\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ begins and ends with 0 and length $(x) \geq 2\}$
$\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\} \cdot\left\{x \in\{0,1\}^{*} \mid x\right.$ begins with 0$\}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ has 00 as a substring $\}$

REVERSAL

Let L be a language over an alphabet Σ.
The reversal of L, denoted by L^{r}, is $\left\{w^{r} \mid w\right.$ is in $L\}$.

Example
$\left\{x \in\{0,1\}^{*} \mid x \text { begins with } 0\right\}^{r}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with 0$\}$
$\left\{x \in\{0,1\}^{*} \mid x \text { has } 00 \text { as a substring }\right\}^{r}$
$=\left\{x \in\{0,1\}^{*} \mid x\right.$ has 00 as a substring $\}$

KLEENE'S CLOSURE

Let L be a language over an alphabet Σ.
The Kleene's closure of L, denoted by L^{*}, is $\{x \mid$ for an integer $n \geq 0 x=x_{1} x_{2} \ldots x_{n}$ and $x_{1}, x_{2}, \ldots, x_{n}$ are in $L\}$.
That is, $L^{*}=\cup_{i=0}^{\infty} L^{i}$
Example: Let $\Sigma=\{0,1\}$ and

$$
\begin{aligned}
& L_{e}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega \text { is even }\right\} \\
& L_{e}^{*}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega \text { is even }\right\} \\
&\left(\bar{L}_{e}\right)^{*}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega \text { is odd }\right\}^{*} \\
&=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega>0\right\}
\end{aligned}
$$

CLOSURE

Let L be a language over an alphabet Σ.
The closure of L, denoted by L^{+}, is $\{x \mid$ for an integer $n \geq 1, x=x_{1} x_{2} \ldots x_{n}$ and x_{1}, x_{2}, \ldots, x_{n} are in $\left.L\right\}$
That is, $L^{+}=\cup_{i=1}^{\infty} L^{i}$
Example:

$$
\begin{aligned}
& \text { Let } \Sigma=\{0, l\} \text { be the alphabet. } \\
& L_{e}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega \text { is even }\right\} \\
& L_{e}^{+}=\left\{\omega \in \Sigma^{*} \mid \text { the number of } 1 \text { 's in } \omega\right. \text { is } \\
& \text { even }\}=L_{e}^{*}
\end{aligned}
$$

OBSERVATION ABOUT CLOSURE

$L^{+}=L^{*}-\{\varepsilon\} ?$

Example:
$L=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is even $\}$
$L^{+}=\left\{\omega \in \Sigma^{*} \mid\right.$ the number of 1 's in ω is even $\}=$ $L_{e}{ }^{*}$

Why?

$$
L^{*}=L^{+} \cup\{\varepsilon\} ?
$$

LANGUAGES AND-PROBLEMS

- Problem
- Example: What are prime numbers > 20?
- Decision problem
- Problem with a YES/NO answer
- Example: Given a positive integer n, is n a prime number > 20?
- Language
- Example: $\{n \mid n$ is a prime number > 20\}

$$
=\{23,29,31,37, \ldots\}
$$

LANGUAGE RECOGNITION AND

 PROBLEM\odot A problem is represented by a set of strings of the input whose answer for the corresponding problem is "YES".

- a string is in a language $=$ the answer of the corresponding problem for the string is "YES"
- Let "Given a positive integer n, is n a prime number > 20?" be the problem P.
- If a string represents an integer i in $\{m \mid m$ is a prime number > 20\}, then the answer for the problem P for $n=i$ is true.

COMMON MISCONCEPTION

Beware

A LANGUAGE IS A SET.

AND, THERE IS ALSO A SET OF LANGUAGES.

A class of language

