COURSE:
THEORY OF

AUTOMATA
COMPUTATION




FEPHESTBBE-EBVERED .

® Introduction
® Why do we study Theory of Computation ?

® Importance of Theory of Computation
® Languages

@ Languages and Problems




WHAT IS COMPUTATION ? .

» Sequence of mathematical operations ?

What are, and are not, mathematical
operations?

» Sequence of well-defined operations
How many operations ?
- The fewer, the better.

Which operations ?
- The simpler, the better.




WHAT DO WE STUDY IN THEORY OF .
COMPUTATION ?

®What is computable, ®What a computer c
and what is not ? and cannot do

®

@ Basis of
Algorithm analysis

Complexity theory Can you make your

program more efficie




WHAT DO WE STUDY IN .
COMPLEXITY THEORY ?

@®What is easy, and what  @What is easy, and w
is difficult, to compute is hard for compute
? do?
@ Is your cryptograpi
scheme safe?




APPLICATIONS IN COMPUTER .
SCIENCE

@Analysis of @Compilers
algorithms @Circuit design
@Complexity Theory

@Cryptography




HISTORY OF THEORY OF .
COMPUTAHON

« 1936 Alan Turing invented the Turing
machine, and proved that there exists an
unsolvable problem.

« 1940’s Stored-program computers were built.

« 1943 McCulloch and Pitts invented finite
automata.

« 1956 Kleene invented regular expressions
and proved the equivalence of regular
expression and finite automata.




HISTORY OF THEORY OF .
COMPUTAHON

« 1956 Chomsky defined Chomsky hierarchy,
which organized languages recognized by
different automata into hierarchical classes.

« 1959 Rabin and Scott introduced
nondeterministic finite automata and proved
its equivalence to (deterministic) finite
automata.

« 1950’s-1960’s More works on languages,
grammars, and compilers




HISTORY OF THEORY OF
COMPUTAHON

® 1965 Hartmantis and Stearns defined time
complexity, and Lewis, Hartmantis and
Stearns defined space complexity.

® 1971 Cook showed the first NP-complete
problem, the satisfiability prooblem.

® 1972 Karp Showed many other NP-complete
problems.




HISTORY OF THEORY OF .
COMPUTAHON

® 1976 Diffie and Helllman defined Modern
Cryptography based on NP-complete
problems.

® 1978 Rivest, Shamir and Adelman proposed a
public-key encryption scheme, RSA.




ALPHABET-AND-STRINGS .

® An alphabet is a finite, non-empty set of
symbols.

{0,1 } is a binary alphabet.

{AB,...,Z a,Db, ..., z}is an English
alphabet.

@ Astring over an alphabet X is a sequence
of any number of symbols from X.
0, 1, 11, 00, and 01101 are strings over {0, 1 }.

Cat, CAT, and compute are strings over the
English alphabet.




EMPTY-STRING .

® An empty string, denoted by ¢, is a
string containing no symbol.

¢ is a string over any alphabet.




EENGTH

® The length of a string x, denoted by

length(x), is the number of positions
of symbols in the string.
etX=1{a,b, ..., 7}

ength(automata) = 8

ength(computation) = 11

ength(e) = 0

® x(i), denotes the symbol in the i

position of a string x, for 1<i<
length(x).




STRING-OPERATHONS .

@Concatenation

®Substring
@Reversal




CONCATENATION .

® The concatenation of strings x and
y, denoted by x-yor xy, is a string z
such that:
z(1) = x(1) for 1 <1 < length(x)

z(1) = y(1) for
length(x)<i<length(x)+length(y)

® Example

automata-computation =
automatacomputation




CONCATENATION .

The concatenation of string x for n
times, where n>0, is denoted by x"

X0 = ¢
xI = x
XZ = X X

X7 = X X X




SUBSTRING

Let x and y be strings over an alphabet X

The string x is a substring of y if there exist
strings w and z over X such thaty =wx z.

¢ 1S a substring of every string.

For every string x, x is a substring of x
itself.

Example

g, comput and computation are
substrings of computation.




REVERSAL .

Let x be a string over an alphabet ¥
The reversal of the string x, denoted
by x ', is a string such that
if X is g, then X" is ¢.

If aisin X, yisin X" and x = ay, then
Xt =y'a.




EXAMPLE OF REVERSAL .

(automata)’
= (utomata)" a
- tomata)" ua
©omata)’ tua
(mata)’ otua
@ta)’ motua
ta" amotua
@' tamotua
- (&' atamotua
= atamotua




The set of strings created from any

number (0 or 1 or ...) of symbols in
an alphabet X is denoted by ".

That is, %= U,_*, 2

Let X = {0, 1}.

>*={g, 0, 1, , 000, 001,
010, 011, ... 1.




E+

® The set of strings created from at least one
symbol (1 or 2 or ...) in an alphabet X is

denoted by X*.

© Thatis, &t = u,_* X'
= Yi=0..0 Zi ) ZO
= V=0« ='- {e}

© LetX=1{0,1}. 2"={0, 1, , 000,
001, 010, 011, ... }.

>* and X* are infinite sets.




FANGUAGES

® A language over an alphabet X is a
set of strings over %.

Let X = {0, 1} be the alphabet.

L, = {weX* | the number of 1'sin o is
even}.

e, 0, 00, 11, 000, 110, 101, 011, 0000, 1100,
1010, 1001, 0110, 0101, 0011, ... are in L,




OPERATHONS-ON-EANGUAGES .

® Complementation
® Union

® Intersection

@ Concatenation

® Reversal

® Closure




COMPLEMENTAHON .

Let L be a language over an alphabet X.

The complementation of L, denoted by L,
is 2*-L.

Example:
Let £ = {0, 1} be the alphabet.
L, = {oeX* | the number of 1’s in ® is even}.

L.= {weX* | the number of 1’s in w is not
even}.

L= {weX* | the number of 1’s in o is odd}.




UNION

Let L, and L, be languages over an
alphabet %.

The union of L, and L,, denoted by
L,UL,, is{x | xisin L,orL,}.
Example:

{xe{0,1}* | x begins with 0} U {xe{0,1}*|x
ends with 0}

= {x € {0,1}*] x begins or ends with 0}




INTERSECTHON

Let L, and L, be languages over an
alphabet X.

The intersection of L, and L,,
denoted by L,nL,, is{ x | xisin L,

and

Examp

L},

€.

{ xe{0,1}*| x begins with 0} n { xe{0,1}*| x
ends with 0}

= { xe{0,1}*| x begins and ends with 0}




CONCATENATION

Let L, and L, be languages over an alphabet X.
The concatenation of L, and L,, denoted by
L,-L,, is {w,; W, | wyisin L, and w,is in L,}.

Example

{ x € {0,1}*| x begins with 0}-{x € {0,1}*| x ends
with 0}

={ x € {0,1}*] x begins and ends with 0 and
length(x) > 2}

{x € {0,1}*] x ends with 0}-{x € {0,1}*| x begins
with 0}
={x € {0,1}*| x has 00 as a substring}




REVERSAL

Let L be a language over an alphabet %.

The reversal of L, denoted by L', is {w"| wis
in L}.

Example
{x € {0,1}*| x begins with 0} '
= {x € {0,1}*| x ends with 0}
{x € {0,1}*| x has 00 as a substring} "
= {x € {0,1}*| x has 00 as a substring}




KLEEENE-S-CLOSURE

Let L be a language over an alphabet X.

The Kleene’s closure of L, denoted by L*, is {x |
for an integer n> 0 X =X, X, ... x, and Xy, X, , ..., X,

are in L}.

That is, L* = u_, L

Example: Let X = {0,1} and

L, = {oeX®
L* = {oeX”
( L)*={oex*

the number of 1's in ® is even}
the number of 1's in ® is even}

the number of 1’s in ® is odd}*

= {weX*| the number of 1’s in ® > 0}




CLOSURE .

Let L be a language over an alphabet X.

The closure of L, denoted by L*, is { x |for
an integer n> 1, X = X;X,...x, and Xy, X,, ...,

X, are in L}
Thatis, L*= U~ L
Example:

Let X = {0, 1} be the alphabet.
L, = {oeX* | the number of 1'sin o is even}

L.t = {weX* | the number of 1'sin ® is
even} = L*




OBSERVATION ABOUT CLOSURE .
L*=L" — {e}?

Example:
L = {oeX* | the number of 1's in ® is even}

L*={weX* | the number of 1's in ® is even} =
L.*

Why?
L =Lty {e}?



EANGUAGES-AND-PROBLEMS .

® Problem

Example: What are prime numbers > 20?

@ Decision problem
Problem with a YES/NO answer

Example: Given a positive integer n, is n a prime
number > 20?

® Language
Example: {n | nis a prime number > 20}
= {23, 29, 31, 37, ...}




LANGUAGE RECOGNITION AND

PROBLEM

@ A problem is represented by a set of strings
of the input whose answer for the

corresponding

@ a string is in a
corresponding

broblem is “YES”.

language = the answer of the

problem for the string is “YES”

Let “Given a positive integer n, is n a prime
number > 20?” be the problem P.

If a string represents an integeriin{m | mis a
prime number > 20}, then the answer for the
problem P for n =i is true.




COMMON
MISCONCEPTION

Beware




A-LANGUAGEAS-A-SET-




AND, THERE IS ALSO A SET OF
LANGUAGES.

A class of languag




