Dronacharya College of Engineering, Gurgaon

Department of Electronics and Computers Engineering

Subject: Theory of Automata Computation (CSE-206-F) Semester: VI/ Branch: ECS

Important Questions

Section A

1. Show that the regular expression $(a+b) * a(a+b) * b(a+b) *$ is equivalent to $(a+b) * a b(a+b) *$ in the sense that they define the same language.
2. Write all differences between deterministic and non-deterministic finite automata.
3. Construct a DFA equivalent to regular expression $b a+(a+b b) a * b$
4. Design a FSM with minimum states which accepts all strings over (a,b) such that number of a's is divisible by $2 \&$ number of b's divisible by 3 .
5. Determine whether all the strings in each of these sets are recognized by the deterministic finite-state automation given below.

(i) $\{a\}^{*}$
(ii) $\{a\}\{a\}^{*}$
(iii) $\{b \mid a\}^{*}$
(iv) $\{a b\}^{*}$
(v) $\{a\}^{*}\{b\}^{*}$
(vi) $\{b\}\{a, b\}^{*}$

Section B

1. Find the language generated by the grammar

S-> AB, A->A1/0, B->2B/3
2. How a NFA is converted to DFA ? Give example and explain.
3. Find a cfg that generate the following language over alphabet $\sum=(\mathrm{a}, \mathrm{b})$
a. all string that end in b and have an even number of b 's in total
b. all string of odd length
4. Convert the given grammer into GNF

S->AB, A->BS/b, B->SA/a
5.Find a reduced grammar equivalent to the grammar G whose Productions are:
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{b}$
$\mathrm{E} \rightarrow \mathrm{c}$
6. Explain CNF and its Lemmas in detail. Find a Grammar in CNF equivalent to the grammar
$\mathrm{S} \longrightarrow コ \sim \mathrm{~S} \left\lvert\,\left[\begin{array}{ll}\mathrm{S} & \mathrm{S} \\ \mathrm{S}\end{array}|\mathrm{p}| \mathrm{q} \quad\right.$ (S being the only variable) \right.
7. Convert the following grammar in to Greibach Normal Form (GNF) $\mathrm{S} \rightarrow \mathrm{aSa} / \mathrm{bSb} / \mathrm{a} / \mathrm{b} / \mathrm{aa} / \mathrm{bb}$.
8. Explain the application of pumping lemma. Give suitable example.

Section C

1. Construct a PDA named A equivalent to the following context free grammar
S->0BB,
B->0S/1S/0
Test whether 010^{4} is in $\mathrm{N}(\mathrm{A})$.
2. Construct a PDA accepting the set of all even length palindromes over the $\{a, b\}$ by empty store
3. Construct a turning machine that can accept set of all even palindromes over $\{0,1\}$
4. Design a T.M to recognize the language $\left\{a^{n} b^{n} c^{m} \mid n, m>=1\right\}$
5. Describe the system for the pushdown automation. Also write purpose of pushdown automation.
6. Explain the basic model of Turing machine. Design a TM to accept language $\mathrm{L}=\left\{\mathrm{WCW} \mid \mathrm{W}\right.$ in $\left.(\mathrm{a}+\mathrm{b})^{+}\right\}$.

Section D

1. Write short notes on:
a. Chomsky Hierarchy of a grammar.
b. Halting Problem of Turing Machine.
