
SOFTWARE ENGINEERING

LECTURE-42

TOPICS COVERED

 Software Testing

 Test Plans

 Test plan Considerations

 IEEE 829

 Reality Check

Several definitions:

“Testing is the process of establishing confidence that a program or

system does what it is supposed to.” by Hetzel 1973

“Testing is the process of executing a program or system with the

intent of finding errors.” by Myers 1979

“Testing is any activity aimed at evaluating an attribute or

capability of a program or system and determining that it meets its

required results.” by Hetzel 1983

What is Software Testing?

- One of very important software development phases

- A software process based on well-defined software quality

control and testing standards, testing methods, strategy, test

criteria, and tools.

- Engineers perform all types of software testing activities to

perform a software test process.

- The last quality checking point for software on its production

line

What is Software Testing?

- Test manager

 - manage and control a software test project

 - supervise test engineers

 - define and specify a test plan

- Software Test Engineers and Testers

 - define test cases, write test specifications, run tests

- Independent Test Group

- Development Engineers

 - Only perform unit tests and integration tests

- Quality Assurance Group and Engineers

 - Perform system testing

 - Define software testing standards and quality control process

Who does Software Testing?

THE TEST PLAN

 The Test Plan
 who

 what

 when

 where

 how

TEST PLAN CONSIDERATIONS

What are the critical or most complex modules?
make sure they get integration tested first

 probably deserve white-box attention

Where have you had problems in the past?

Third-Party delivered components?

What training is required?
 conducting formal reviews

 use of testing tools
 defect report logging

IEEE 829 - STANDARD FOR

SOFTWARE TEST DOCUMENTATION
Recommends 8 types of testing documents:
1. Test Plan

 next slide

2. Test Design Specification
 expected results, pass criteria, ...

3. Test Case Specification
 test data for use in running the tests

4. Test Procedure Specification
 how to run each test

5. Test Item Transmittal Report
 reporting on when components have progressed from one

stage of testing to the next

6. Test Log

7. Test Incident Report
 for any test that failed, the actual versus expected result

8. Test Summary Report
 management report

http://en.wikipedia.org/wiki/IEEE_829

TEST PLAN CONTENTS (IEEE 829 FORMAT)

1. Test Plan Identifier

2. References

3. Introduction

4. Test Items
see next slide

5. Software Risk Issues

6. Features to be Tested

7. Features not to be Tested

8. Approach

9. Item Pass/Fail Criteria

10. Suspension Criteria and

Resumption Requirements

11. Test Deliverables

12. Remaining Test Tasks

13. Environmental Needs

14. Staffing and Training Needs

15. Responsibilities

16. Schedule

17. Planning Risks and

Contingencies

18. Approvals

19. Glossary

http://en.wikipedia.org/wiki/Test_Plan

TEST ITEMS

Requirements Specification

Design

Modules

User/Operator Material
 the user interface

User Guide

Operations Guide

Features
 response time, data accuracy, security, etc

System Validation
 alpha and beta testing

Based on IEEE 829

REALITY CHECK

When is more testing not cost effective?

Software Quality Assurance Activities

SAR
Cost of SQA

Cost of Failure

SQA

+

Failure

Optimal Quality Level

TESTING

Software
Apply input Observe output

Validate the observed output against the expected output

Is the observed output the same as the expected output?

Oracle

ORACLE: EXAMPLES

© Aditya P. Mathur 2009

•How to verify the output of a matrix

multiplication?

• How to verify the output of a matrix

inversion program?

• How to verify the output of a sorting

algorithm?

ORACLE: EXAMPLE

A tester often assumes the role of an oracle and thus serves as human oracle.

How to verify the output of a matrix multiplication?

Hand calculation: the tester might input two matrices and check if the output of

the program matches the results of hand calculation.

Oracles can also be programs. For example, one might use a matrix

multiplication to check if a matrix inversion program has produced the correct

result: A × A-1 = I

How to verify the output of a sorting algorithm?

© Aditya P. Mathur 2009

ORACLE: CONSTRUCTION

Construction of automated oracles, such as the one to check

a matrix multiplication program or a sort program, requires

the determination of input-output relationship.

In general, the construction of automated oracles is a

complex undertaking.

LIMITATIONS OF TESTING
 Dijkstra, 1972

 Testing can be used to show the presence of bugs, but

never their absence

 Goodenough and Gerhart, 1975

 Testing is successful if the program fails

 The (modest) goal of testing

 Testing cannot guarantee the correctness of software

but can be effectively used to find errors (of certain

types)

•Principle #1: Complete testing is impossible.

•Principle #2: Software testing is not simple activity.
•Reasons:

•Quality testing requires testers to understand a system/product completely
•Quality testing needs adequate test set, and efficient testing methods
•A very tight schedule and lack of test tools.

•Principle #3: Testing is risk-based.

•Principle #4: Testing must be planned.

•Principle #5: Testing requires independence (SQA team).

•Principle #6: Quality software testing depends on:
•Good understanding of software products and related domain application
•Cost-effective testing methodology, coverage, test methods, and tools.
•Good engineers with creativity, and solid software testing experience

Software Testing Principles

FUNDAMENTAL QUESTIONS IN TESTING
When can we stop testing?

 Test coverage
What should we test?

 Test generation
 Is the observed output correct?

 Test oracle
How well did we do?

 Test efficiency
Who should test your program?

 Independent V&V

Software Testing Process

Unit test

Integration

test

Validation

test

System

test
System engineering

Requirements

Software Design

Code & Implementation

V&V Targets

TESTING PROCESS GOALS

 Validation testing

 To demonstrate to the developer and the system customer

that the software meets its requirements;

 A successful test shows that the system operates as

intended.

 Verification – Defect testing

 To discover faults or defects in the software where its

behavior is incorrect or not in conformance with its

specification;

 A successful test is a test that makes the system perform

incorrectly and so exposes a defect in the system.

LEVELS OF TESTING

 Component/Unit testing

 Integration testing

 System testing

 Acceptance testing

 Regression testing

LEVELS OF TESTING

What users

really need

Requirements

Design

Code

Acceptance testing

System testing

Integration testing

Unit testing

Maintenance Regression Testing

COMPONENT/UNIT TESTING

Software Testing Process

COMPONENT TESTING

 Testing of individual program components;

 Usually the responsibility of the component developer (except sometimes for

critical systems);

 Tests are derived from the developer’s experience.

 Require knowledge of code

 High level of detail

 Deliver thoroughly tested components to integration

 Stopping criteria

 Code Coverage

 Quality

COMPONENT TESTING

 Test case

 Input, expected outcome, purpose

 Selected according to a strategy, e.g., branch coverage

 Outcome

 Pass/fail result

 Log, i.e., chronological list of events from execution

INTEGRATION TESTING

Software Testing Process

INTEGRATION TESTING

 Test assembled components

 These must be tested and accepted previously

 Focus on interfaces

 Might be interface problem although components work

when tested in isolation

 Might be possible to perform new tests

INTEGRATION TESTING

 Strategies

 Bottom-up, start from bottom and add one at a time

 Top-down, start from top and add one at a time

 Big-bang, everything at once

 Functional, order based on execution

 Simulation of other components

 Stubs receive output from test objects

 Drivers generate input to test objects

 Note that these are also SW, i.e., need testing etc.

INTEGRATION TESTING

 There are two groups of software integration strategies:

 - Non Incremental software integration
 - Incremental software integration

Non Incremental software integration:

 Big bang integration approach

Incremental software integration:

 Top- down software integration
 Bottom-up software integration
 Sandwich integration

INTEGRATION TESTING
 Involves building a system from its components and

testing it for problems that arise from component
interactions.

 Top-down integration
 Develop the skeleton of the system and populate it with

components. Use stubs to replace real components.

 Two strategies: depth first and breadth first.

 Bottom-up integration
 Integrate infrastructure components then add functional

components. Use drivers to test components

 To simplify error localisation, systems should be
incrementally integrated.

SYSTEM TESTING

Software Testing Process

SYSTEM TESTING

 Testing of groups of components integrated to

create a system or sub-system;

 The responsibility of an independent testing team;

 Tests are based on a system specification.

SYSTEM TESTING

 Functional testing

 Test end to end functionality

 Requirement focus

 Test cases derived from specification

 Use-case focus

 Test selection based on user profile

SYSTEM TESTING

 Non-functional testing

 Quality attributes

 Performance, can the system handle required

throughput?

 Reliability, obtain confidence that system is reliable

 Timeliness, testing whether the individual tasks meet

their specified deadlines

 etc.

ACCEPTANCE TESTING

Software Testing Process

ACCEPTANCE TESTING

 User (or customer) involved

 Environment as close to field use as possible

 Focus on:

 Building confidence

 Compliance with defined acceptance criteria in the

contract

REGRESSION TESTING

Software Testing Process

RE-TEST AND REGRESSION TESTING

 Conducted after a change

 Re-test aims to verify whether a fault is removed
 Re-run the test that revealed the fault

 Regression test aims to verify whether new faults are

introduced
 How can we test modified or newly inserted programs?

 Ignore old test suites and make new ones from the scratch or

 Reuse old test suites and reduce the number of new test suites as

many as possible

 Should preferably be automated

TEST STRATEGIES

Software Testing Process

STRATEGIES
 Code coverage strategies, e.g.

 Decision coverage

 Path coverage

 Data-Flow analysis (Defines -> Uses)

 Specification-based testing, e.g.

 Equivalence partitioning

 Boundary-value analysis

 Combination strategies

 State-based testing

TEST STRATEGIES
 Black-box or behavioral testing

 knowing the specified function a product is to perform
and demonstrating correct operation based solely on its
specification without regard for its internal logic

 White-box or glass-box testing

 knowing the internal workings of a product, tests are
performed to check the workings of all possible logic
paths

CODE COVERAGE

 Statement coverage

 Each statement should be executed by at least one test

case

 Minimum requirement

 Branch/Decision coverage

 All paths should be executed by at least one test case

 All decisions with true and false value

MUTATION TESTING

 Create a number of mutants, i.e., faulty versions
of program
 Each mutant contains one fault

 Fault created by using mutant operators

 Run test on the mutants (random or selected)
 When a test case reveals a fault, save test case and

remove mutant from the set, i.e., it is killed

 Continue until all mutants are killed

 Results in a set of test cases with high quality

 Need for automation

MUTATION TESTING

 Mutants

int getMax(int x, int y) { int getMax(int x, int y) {

 int max; int max;

 if (x >y) if (x >=y)

 max = x; max = x;

 else else

 max = y; max = y;

 return max; return max;

} }

int getMax(int x, int y) {
 int max;

 if (x >y)
 max = x;

 else
 max = x;
return max;
}

EXAMPLES OF MUTANT OPERATORS

Mutant operator In program In mutant

Variable replacement z=x*y+1; x=x*y+1;

z=x*x+1;

Relational operator

replacement

if (x<y) if(x>y)

if(x<=y)

Off-by-1 z=x*y+1; z=x*(y+1)+1;

z=(x+1)*y+1;

Replacement by 0 z=x*y+1; z=0*y+1;

z=0;

Arithmetic operator

replacement

z=x*y+1; z=x*y-1;

z=x+y-1;

SPECIFICATION-BASED TESTING

 Test cases derived from specification

 Equivalence partitioning

 Identify sets of input from specification

 Assumption: if one input from set s leads to a failure, then all

inputs from set s will lead to the same failure

 Chose a representative value from each set

 Form test cases with the chosen values

SPECIFICATION-BASED TESTING

Program
Actual output

Specification

Apply input

Expected output

Validate the observed output against the expected output

BLACK BOX TESTING
 EQUIVALENCE PARTITIONING

 Input data and output results often fall into different

classes where all members of a class are related.

 Each of these classes is an equivalence partition or

domain where the program behaves in an equivalent way

for each class member.

 Test cases should be chosen from each partition.

EQUIVALENCE PARTITIONING
 Black-box technique divides the input domain into

classes of data from which test cases can be

derived.

 An ideal test case uncovers a class of errors that

might require many arbitrary test cases to be

executed before a general error is observed.

SPECIFICATION-BASED TESTING

 Boundary value analysis

 Identify boundaries in input and output

 For each boundary:

 Select one value from each side of boundary (as close as

possible)

 Form test cases with the chosen values

BOUNDARY VALUE ANALYSIS
 Black-box technique

 focuses on classes and also on the boundaries of the input domain.

 Guidelines:

1. If input condition specifies a range bounded by values a and b, test cases
should include a and b, values just above and just below a and b

2. If an input condition specifies a number of values, test cases should exercise
the minimum and maximum numbers, as well as values just above and just
below the minimum and maximum values

STATE-BASED TESTING

 Model functional behavior in a state machine

(communication – protocol …)

 Select test cases in order to cover the graph

 Each node

 Each transition

 Each pair of transitions

 Each chain of transitions of length n

EXAMPLE:
FACTORIAL FUNCTION: N!

Factorial n n!

FACTORIAL OF N: N!

 Equivalence partitioning – break the input domain

into different classes:

 Class1: n<0
 Class2: n>0 and n! doesn’t cause an overflow
 Class3: n>0 and n! causes an overflow

 Boundary Value Analysis:

 n=0 (between class1 and class2)

FACTORIAL OF N: N!
TEST CASES
 Test case = (ins, expected outs)

 Equivalence partitioning – break the input
domain into different classes:

1. From Class1: ((n = -1), “ function not defined for
n negative”)

2. From Class2: ((n = 3), 6)
3. From Class3: ((n=100), “ input value too big”)

 Boundary Value Analysis:

4. ((n=0), 1)

TEST STRATEGIES

White-Box Testing

Structural Testing

WHITE BOX TESTING

STRUCTURAL TESTING

 The objective of path testing is to ensure that the set of test
cases is such that each path through the program is
executed at least once.

 The starting point for path testing is a program flow graph
that shows nodes representing program decisions and arcs
representing the flow of control.

 Statements with conditions are therefore nodes in the flow
graph.

PATH TESTING – CONTROL FLOW GRAPH

 White-box technique is based on the program flow graph (CFG)

 Many paths between 1 (begin) and 6 (end)

 1, 2, 5, 6

 1, 2, 3, 4, 2, 6

 1, 2, 3, 4, 2, 3, 4, 2, 5, 6

 …

 Prepare test cases that will force the execution of each path in the basis set.

 Test case : ((inputs …) , (expected outputs …))

2

3

4

5

1

6

PROGRAM FLOW GRAPH
BASIC CONTROL FLOW GRAPHS

1

2

A sequence:

X = 1;

Y = X * 10;

1

4

2 3

If condition:

If … Then

 …

Else

 …

End if

2

3

4

5

1

While loop:

While … do

 …

statements

 …

End while

Do While loop

(Repeat until):

do

 …

statements

 …

While …

2

3

4

5

1

EXAMPLE:
BINARY SEARCH PSEUDO-CODE

BINARY SEARCH FLOW GRAPH

INDEPENDENT PATHS

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14

 1, 2, 3, 4, 5, 14

 1, 2, 3, 4, 5, 6, 7, 11, 12, 5, …

 1, 2, 3, 4, 6, 7, 2, 11, 13, 5, …

 Test cases should be derived so that all of these

paths are executed

SOFTWARE METRICS

 McCabe’s cyclomatic number, introduced in 1976, is, after
lines of code, one of the most commonly used metrics in
software development.

 The cyclomatic complexity of the program is computed from
its control flow graph (CFG) using the formula:

 V(G) = Edges – Nodes + 2

 or by counting the conditional statements and adding 1

 This measure determines the basis set of linearly
independent paths and tries to measure the complexity of a
program

SOFTWARE METRICS

 V(G) = Edges – Nodes + 2
 V(G) = 6 – 6 + 2 = 2

 V(G) = conditional statements + 1
 = 1 + 1 = 2

 Two linearly independent paths:

 1, 2, 5, 6
 1, 2, 3, 4, 2, 5, 6

2

3

4

5

1

6

SOFTWARE METRICS

 V(G) = Edges – Nodes + 2
 V(G) = 16 – 14 + 2 = 4
 V(G) = # regions = 4

 V(G) = conditional

statements + 1
 = 3 + 1 = 4

 four linearly independent

paths

REFERENCES

 K. NAIK AND P. TRIPATHY: “SOFTWARE TESTING AND
QUALITY ASSURANCE”, WILEY, 2008.

 IAN SOMMERVILLE, SOFTWARE ENGINEERING, 8TH
EDITION, 2006.

 ADITYA P. MATHUR,“FOUNDATIONS OF SOFTWARE
TESTING”, PEARSON EDUCATION, 2009.

 D. GALIN, “SOFTWARE QUALITY ASSURANCE: FROM
THEORY TO IMPLEMENTATION”, PEARSON EDUCATION,
2004

 DAVID GUSTAFSON, “THEORY AND PROBLEMS OF
SOFTWARE ENGINEERING”, Schaum’s Outline Series,
McGRAW-HILL, 2002.

