
SOFTWARE ENGINEERING

 LECTURE-40

 Mutation Testing

TOPICS COVERED

 Mutation Testing

 Goals

 Testing Method

 Mutation Process

 Traditional Syntactical Mutation Operators

WHAT IS MUTATION TESTING?

Source Code Tests

Verify Quality of…

Mutation

Testing

Verify Quality of…

INTRODUCTION

Who Watches The Watchmen?

In this case: What Tests The Tests?

Mutation Testing is a method of inserting faults into

programs to test whether the tests pick them up,

thereby validating or invalidating the tests

HISTORY OF MUTATION

Can trace birth of Mutation Testing back to a

student paper written in 1971, by Lipton

More interest in the late 70s (DeMillo et al.)

Died down due to problems of cost

Being researched again recently due to availability

of much higher computing power

Is most recently being used on non-imperative

languages such as Java and XML

GOALS

To assess the quality of the tests by performing

them on mutated code

To use these assessments to help construct more

adequate tests

To thereby produce a suite of valid tests which can

be used on real programs

HOW DOES IT WORK?

1ST STEP: CREATE THE MUTANT

The Source

Code

The Mutation “Operator”

Mutation

Process

The “Mutant”

EXAMPLES
DebitCard>>= anotherDebitCard

 ^(type = anotherDebitCard type)

 and: [number = anotherDebitCard number]

CreditCard>>= anotherDebitCard

 ^(type = anotherDebitCard type)

 or: [number = anotherDebitCard number]

Operator: Change #and: by #or:

EXAMPLES

Purchase>>netPaid

 ^self totalPaid – self totalRefunded

Purchase>>netPaid

 ^self totalPaid + self totalRefunded

Change #- with #+

WHY?

HOW DOES IT HELP?

HOW DOES IT WORK?

2ND STEP: TRY TO KILL THE MUTANT

A Killer

tries to kill the Mutant!

The Test Suite

The “Mutant”

All tests run  The Mutant Survives!!!

A test fails or errors  The Mutant Dies

MEANING…

The Mutant Survives  The case generated by the mutant

is not tested

The Mutant Dies  The case generated by the mutant is

tested

TESTING METHOD

Mutant processes are created to try to mimic typical
syntactic errors made by programmers

Many differing mutants are run against the specified
tests to assess the quality of the tests

The tests are attributed with a score as to whether they
can distinguish between the original and the mutants

TRADITIONAL SYNTACTICAL MUTATION

OPERATORS

Deletion of a statement

Boolean:

Replacement of a statement with another

 eg. == and >=, < and <=

Replacement of boolean expressions with true or false

 eg. a || b with true

Replacement of arithmetic

 eg. * and +, / and -

Replacement of a variable (ensuring same scope/type)

If process is not

error-free, fix it

Test

Mutants

THE MUTATION PROCESS

Process

Mutation Mutation Mutation Tests

Test

Process

Create

Mutants

Yes

Test

Complete No

Any Live

Mutants?

Problem

with Tests?

Any Mutations that

are caught by tests

are killed

New Test

Data

HOW DOES IT WORK? - SUMMARY

 Changes the original source code with special “operators” to

generate “Mutants”

 Run the test suite related to the changed code

• If a test errors or fails  Kills the mutant

• If all tests run  The Mutant survives

 Surviving Mutants show not tested cases

The Important Thing!

Why is not widely

used?

Is not new … - History

•Begins in 1971, R. Lipton, “Fault Diagnosis of

Computer Programs”

•Generally accepted in 1978, R. Lipton et al,

“Hints on test data selection: Help for the

practicing programmer”

Why is not widely used?

•Technical Problem: It is a Brute Force technique!

Technical Problems
• Brute force technique

•N x M

• N = number of tests

• M = number of mutants

• Number of Tests: 666

• Number of Mutants: 1005

• Time to create a

mutant/compile/link/run: 10 secs. each

aprox.?

• Total time:

– 6693300 seconds

– 1859 hours, 15 minutes

Mutant Equivalence

• There may be surviving mutants that cannot

be killed, these are called Equivalent Mutants

• Although syntactically different, these

mutants are indistinguishable through testing.

• They therefore have to be checked ‘by hand’

while...

...

i++

if (i==5)

break;

while...

...

i++

if (i>=5)

break;

Mutant Equivalence

• Checking through all the Equivalent Mutants
can make Mutation Testing cost-prohibitive

“Even for these small programs the human effort needed to check a large
number of mutants for equivalence was almost prohibitive” - Frankl et al.,
1997

• R.M. Hierons et al., 1999 proposed Program
Slicing could be used in imperative languages
to help towards the problem of Equivalent
Mutants

• Offutt and Pan, 1996 introduced an approach
based on constraint solving that increased the
equivalence detection rate up to 48%

Problems
• There are a few factors that stop Mutation Testing

from being more than an academic research topic,
and being a practical method of testing:

• The undecidability of Equivalent Mutants, and the
cost of checking ‘by hand’

• The relatively high computational cost of running all
the mutations against a test set

• The need for a Human Oracle to verify the contents
of output is made more expensive by increases in
test cases; this is especially the case using Mutation
Testing

• However, methods for limiting the costs involved are
continuing to be developed, increasing the chances of
industry adoption

References
1. R. A. DeMillo, R. J. Lipton and F. G. Sayward (1978), “Hints on test data selection: Help

for the practical programmer,” IEEE Computer no. 11, pp. 34-41.

2. P. G. Frankl, S. N. Weiss and C. Hu (1997), “All-uses vs mutation testing: An
experimental comparison of effectiveness,” Journal of Systems Software no. 38, pp.
235-253.

3. R. M. Hierons, M. Harman and S. Danicic (1999), “Using Program Slicing to Assist in the
Detection of Equivalent Mutants,” Software Testing, Verification and Reliability, vol. 9,
no. 4, pp. 233-262.

4. A. J. Offutt and J. Pan (1996), “Detecting equivalent mutants and the feasible path
problem,” Annual Conference on Computer Assurance (COMPASS 96), IEEE Computer
Society Press, pp. 224-236.

5. R. T. Alexander, J. M. Bieman, S. Ghosh and J. Bixia (2002), “Mutation of Java
objects,” 13th International Symposium on Software Reliability Engineering, Fort Collins,
CO, USA, 2002, pp. 341-351.

6. J. S. Bradbury, J. R. Cordy, and J. Dingel (2006), “Mutation operators for concurrent
Java (J2SE 5.0),” Proc. of the 2nd Workshop on Mutation Analysis (Mutation 2006), pp.
83–92.

7. K. M. Sacha (2006), “Software engineering techniques: design for quality,” Springer, pp
274-275

8. M. Harman and Y. Jia (2009), http://www.dcs.kcl.ac.uk/pg/jiayue/repository/index.php,
“Mutation Testing Repository,” accessed on 26/11/2009.

http://www.dcs.kcl.ac.uk/pg/jiayue/repository/index.php

