
SOFTWARE ENGINEERING

LECTURE-38

 Software Quality

Assurance

TOPICS COVERED

 Quality Concepts

 Quality Cost

 Total Quality Management

 Software Reviews

QUALITY CONCEPTS - 1

Variation control is the heart of quality

control

Software engineers strive to control the

 process applied

 resources expended

 end product quality attributes

Quality of design

 refers to characteristics designers specify for the

end product to be constructed

QUALITY CONCEPTS - 2

Quality of conformance
 degree to which design specifications are followed

in manufacturing the product

Quality control
 series of inspections, reviews, and tests used to

ensure conformance of a work product to its
specifications

Quality assurance
 auditing and reporting procedures used to provide

management with data needed to make proactive
decisions

QUALITY COSTS

 quality planning, formal technical reviews, test
equipment, training

Appraisal costs
 in-process and inter-process inspection, equipment

calibration and maintenance, testing

Failure costs
 rework, repair, failure mode analysis

External failure costs
 complaint resolution, product return and replacement,

help line support, warranty work

TOTAL QUALITY MANAGEMENT - 1

 Kaizen

 develop a process that is visible, repeatable, and

measurable

 Atarimae hinshitsu

 examine the intangibles that affect the process and work

to optimize their impact on the process

TOTAL QUALITY MANAGEMENT - 2

 Kanse

 examine the way the product is used by the customer

with an eye to improving both the product and the

development process

 Miryokuteki hinshitsu

 observe product use in the market place to uncover new

product applications and identify new products to

develop

SOFTWARE QUALITY ASSURANCE

Conformance to software requirements is
the foundation from which software quality is
measured.

Specified standards are used to define the
development criteria that are used to guide
the manner in which software is engineered.

Software must conform to implicit
requirements (ease of use, maintainability,
reliability, etc.) as well as its explicit
requirements.

SQA GROUP ACTIVITIES - 1

 Prepare SQA plan for the project.

 Participate in the development of the project's

software process description.

 Review software engineering activities to verify

compliance with the defined software process.

SQA GROUP ACTIVITIES - 2

Audit designated software work products to

verify compliance with those defined as part

of the software process.

Ensure that any deviations in software or

work products are documented and handled

according to a documented procedure.

Record any evidence of noncompliance and

reports them to management.

SOFTWARE REVIEWS

Purpose is to find defects (errors) before
they are passed on to another software
engineering activity or released to the
customer.

Software engineers (and others) conduct
formal technical reviews (FTR) for software
engineers.

Using formal technical reviews
(walkthroughs or inspections) is an effective
means for improving software quality.

REVIEW ROLES

 maintenance oracle

 standards bearer

 user representative

 others

FORMAL TECHNICAL REVIEWS - 1

 Involves 3 to 5 people (including reviewers)

Advance preparation (no more than 2 hours

per person) required

Duration of review meeting should be less

than 2 hours

Focus of review is on a discrete work

product

Review leader organizes the review meeting

at the producer's request.

FORMAL TECHNICAL REVIEWS - 2

• Reviewers ask questions that enable the
producer to discover his or her own error
(the product is under review not the
producer)

• Producer of the work product walks the
reviewers through the product

• Recorder writes down any significant issues
raised during the review

• Reviewers decide to accept or reject the
work product and whether to require
additional reviews of product or not.

WHY DO PEER REVIEWS?

 To improve quality.

 Catches 80% of all errors if done properly.

 Catches both coding errors and design errors.

 Enforce the spirit of any organization standards.

 Training and insurance.

FORMALITY AND TIMING

• Formal review presentations
• resemble conference presentations.

• Informal presentations
• less detailed, but equally correct.

• Early
• tend to be informal

• may not have enough information

• Later
• tend to be more formal

• Feedback may come too late to avoid rework

FORMALITY AND TIMING

 Analysis is complete.

 Design is complete.

 After first compilation.

 After first test run.

 After all test runs.

 Any time you complete an activity that produce a

complete work product.

REVIEW GUIDELINES

 Keep it short (< 30 minutes).

 Don’t schedule two in a row.

 Don’t review product fragments.

 Use standards to avoid style disagreements.

 Let the coordinator run the meeting and maintain

order.

FORMAL SQA APPROACHES

1. Proof of correctness.

2. Statistical quality assurance.

3. Cleanroom process combines items 1 & 2.

STATISTICAL QUALITY ASSURANCE

 Information about software defects is

collected and categorized

Each defect is traced back to its cause

Using the Pareto principle (80% of the

defects can be traced to 20% of the causes)

isolate the "vital few" defect causes

Move to correct the problems that caused

the defects

SOFTWARE RELIABILITY

Defined as the probability of failure free
operation of a computer program in a
specified environment for a specified time
period

Can be measured directly and estimated
using historical and developmental data
(unlike many other software quality factors)

Software reliability problems can usually be
traced back to errors in design or
implementation.

SOFTWARE RELIABILITY METRICS

Reliability metrics are units of measure for

system reliability

System reliability is measured by counting

the number of operational failures and

relating these to demands made on the

system at the time of failure

A long-term measurement program is

required to assess the reliability of critical

systems

RELIABILITY METRICS - PART 1

Probability of Failure on Demand (POFOD)

 POFOD = 0.001

 For one in every 1000 requests the service fails

per time unit

Rate of Fault Occurrence (ROCOF)

 ROCOF = 0.02

 Two failures for each 100 operational time units

of operation

RELIABILITY METRICS - PART 2

 Mean Time to Failure (MTTF)

 average time between observed failures (aka MTBF)

 Availability = MTBF / (MTBF+MTTR)

 MTBF = Mean Time Between Failure

 MTTR = Mean Time to Repair

 Reliability = MTBF / (1+MTBF)

TIME UNITS

 Raw Execution Time

 non-stop system

 Calendar Time

 If the system has regular usage patterns

 Number of Transactions

 demand type transaction systems

SOFTWARE SAFETY

SQA activity that focuses on identifying
potential hazards that may cause a software
system to fail.

Early identification of software hazards
allows developers to specify design features
to can eliminate or at least control the
impact of potential hazards.

Software reliability involves determining the
likelihood that a failure will occur without
regard to consequences of failures.

VALIDATION PERSPECTIVES

Reliability validation
 Does measured system reliability meet its

specification?

 Is system reliability good enough to satisfy
users?

Safety validation
 Does system operate so that accidents do not

occur?

 Are accident consequences minimized?

Security validation
 Is system secure against external attack?

VALIDATION TECHNIQUES

Static techniques

 design reviews and program inspections

 mathematical arguments and proof

Dynamic techniques

 statistical testing

 scenario-based testing

 run-time checking

Process validation

 SE processes should minimize the chances of

introducing system defects

STATIC VALIDATION TECHNIQUES

Concerned with analysis of documentation

Focus is on finding system errors and

identifying potential problems that may arise

during system operation

Documents may be prepared to support

static validation

 structured arguments

 mathematical proofs

STATIC SAFETY VALIDATION

TECHNIQUES

 Demonstrating safety by testing is difficult

 Testing all possible operational situations is
impossible

 Normal reviews for correctness may be
supplemented by specific techniques intended to
make sure unsafe situations never arise

SAFETY REVIEWS

 Intended system functions correct?

 Is structure maintainable and

understandable?

Verify algorithm and data structure design

against specification

Check code consistency with algorithm and

data structure design

Review adequacy of system testing

HAZARD-DRIVEN ANALYSIS

Effective safety assurance relies on hazard

identification

Safety can be assured by

 hazard avoidance

 accident avoidance

 protection systems

Safety reviews should demonstrate that one

or more of these techniques have been

applied to all identified hazards

SYSTEM SAFETY CASE

The normal practice for a formal safety case
to be required for all safety-critical computer-
based systems

A safety case presents a list of arguments,
based on identified hazards, as to why there
is an acceptably low probability that these
hazards will not result in an accident

Arguments can be based on formal proof,
design rationale, safety proofs, and process
factors

POKA-YOKE DEVICES

 Mechanisms that lead to the prevention of a

potential quality problem before it occurs or to the

rapid detection of a quality problem if one is

introduced

 Are a simple, cheap, part of the engineering

process, and are located near the process task

where the mistakes are likely to occur

SQA PLAN – 1

Management section
 describes the place of SQA in the structure of the

organization

Documentation section
 describes each work product produced as part of

the software process

Standards, practices, and conventions section
 lists all applicable standards/practices applied

during the software process and any metrics to be
collected as part of the software engineering work

SQA PLAN - 2

 Reviews and audits section

 provides an overview of the approach used in the reviews

and audits to be conducted during the project

 Test section

 references the test plan and procedure document and

defines test record keeping requirements

SQA PLAN - 3

Problem reporting and corrective action

section

 defines procedures for reporting, tracking, and

resolving errors or defects, identifies organizational

responsibilities for these activities

Other

 tools, SQA methods, change control, record

keeping, training, and risk management

