
SOFTWARE ENGINEERING

LECTURE-38

 Software Quality

Assurance

TOPICS COVERED

 Quality Concepts

 Quality Cost

 Total Quality Management

 Software Reviews

QUALITY CONCEPTS - 1

Variation control is the heart of quality

control

Software engineers strive to control the

 process applied

 resources expended

 end product quality attributes

Quality of design

 refers to characteristics designers specify for the

end product to be constructed

QUALITY CONCEPTS - 2

Quality of conformance
 degree to which design specifications are followed

in manufacturing the product

Quality control
 series of inspections, reviews, and tests used to

ensure conformance of a work product to its
specifications

Quality assurance
 auditing and reporting procedures used to provide

management with data needed to make proactive
decisions

QUALITY COSTS

 quality planning, formal technical reviews, test
equipment, training

Appraisal costs
 in-process and inter-process inspection, equipment

calibration and maintenance, testing

Failure costs
 rework, repair, failure mode analysis

External failure costs
 complaint resolution, product return and replacement,

help line support, warranty work

TOTAL QUALITY MANAGEMENT - 1

 Kaizen

 develop a process that is visible, repeatable, and

measurable

 Atarimae hinshitsu

 examine the intangibles that affect the process and work

to optimize their impact on the process

TOTAL QUALITY MANAGEMENT - 2

 Kanse

 examine the way the product is used by the customer

with an eye to improving both the product and the

development process

 Miryokuteki hinshitsu

 observe product use in the market place to uncover new

product applications and identify new products to

develop

SOFTWARE QUALITY ASSURANCE

Conformance to software requirements is
the foundation from which software quality is
measured.

Specified standards are used to define the
development criteria that are used to guide
the manner in which software is engineered.

Software must conform to implicit
requirements (ease of use, maintainability,
reliability, etc.) as well as its explicit
requirements.

SQA GROUP ACTIVITIES - 1

 Prepare SQA plan for the project.

 Participate in the development of the project's

software process description.

 Review software engineering activities to verify

compliance with the defined software process.

SQA GROUP ACTIVITIES - 2

Audit designated software work products to

verify compliance with those defined as part

of the software process.

Ensure that any deviations in software or

work products are documented and handled

according to a documented procedure.

Record any evidence of noncompliance and

reports them to management.

SOFTWARE REVIEWS

Purpose is to find defects (errors) before
they are passed on to another software
engineering activity or released to the
customer.

Software engineers (and others) conduct
formal technical reviews (FTR) for software
engineers.

Using formal technical reviews
(walkthroughs or inspections) is an effective
means for improving software quality.

REVIEW ROLES

 maintenance oracle

 standards bearer

 user representative

 others

FORMAL TECHNICAL REVIEWS - 1

 Involves 3 to 5 people (including reviewers)

Advance preparation (no more than 2 hours

per person) required

Duration of review meeting should be less

than 2 hours

Focus of review is on a discrete work

product

Review leader organizes the review meeting

at the producer's request.

FORMAL TECHNICAL REVIEWS - 2

• Reviewers ask questions that enable the
producer to discover his or her own error
(the product is under review not the
producer)

• Producer of the work product walks the
reviewers through the product

• Recorder writes down any significant issues
raised during the review

• Reviewers decide to accept or reject the
work product and whether to require
additional reviews of product or not.

WHY DO PEER REVIEWS?

 To improve quality.

 Catches 80% of all errors if done properly.

 Catches both coding errors and design errors.

 Enforce the spirit of any organization standards.

 Training and insurance.

FORMALITY AND TIMING

• Formal review presentations
• resemble conference presentations.

• Informal presentations
• less detailed, but equally correct.

• Early
• tend to be informal

• may not have enough information

• Later
• tend to be more formal

• Feedback may come too late to avoid rework

FORMALITY AND TIMING

 Analysis is complete.

 Design is complete.

 After first compilation.

 After first test run.

 After all test runs.

 Any time you complete an activity that produce a

complete work product.

REVIEW GUIDELINES

 Keep it short (< 30 minutes).

 Don’t schedule two in a row.

 Don’t review product fragments.

 Use standards to avoid style disagreements.

 Let the coordinator run the meeting and maintain

order.

FORMAL SQA APPROACHES

1. Proof of correctness.

2. Statistical quality assurance.

3. Cleanroom process combines items 1 & 2.

STATISTICAL QUALITY ASSURANCE

 Information about software defects is

collected and categorized

Each defect is traced back to its cause

Using the Pareto principle (80% of the

defects can be traced to 20% of the causes)

isolate the "vital few" defect causes

Move to correct the problems that caused

the defects

SOFTWARE RELIABILITY

Defined as the probability of failure free
operation of a computer program in a
specified environment for a specified time
period

Can be measured directly and estimated
using historical and developmental data
(unlike many other software quality factors)

Software reliability problems can usually be
traced back to errors in design or
implementation.

SOFTWARE RELIABILITY METRICS

Reliability metrics are units of measure for

system reliability

System reliability is measured by counting

the number of operational failures and

relating these to demands made on the

system at the time of failure

A long-term measurement program is

required to assess the reliability of critical

systems

RELIABILITY METRICS - PART 1

Probability of Failure on Demand (POFOD)

 POFOD = 0.001

 For one in every 1000 requests the service fails

per time unit

Rate of Fault Occurrence (ROCOF)

 ROCOF = 0.02

 Two failures for each 100 operational time units

of operation

RELIABILITY METRICS - PART 2

 Mean Time to Failure (MTTF)

 average time between observed failures (aka MTBF)

 Availability = MTBF / (MTBF+MTTR)

 MTBF = Mean Time Between Failure

 MTTR = Mean Time to Repair

 Reliability = MTBF / (1+MTBF)

TIME UNITS

 Raw Execution Time

 non-stop system

 Calendar Time

 If the system has regular usage patterns

 Number of Transactions

 demand type transaction systems

SOFTWARE SAFETY

SQA activity that focuses on identifying
potential hazards that may cause a software
system to fail.

Early identification of software hazards
allows developers to specify design features
to can eliminate or at least control the
impact of potential hazards.

Software reliability involves determining the
likelihood that a failure will occur without
regard to consequences of failures.

VALIDATION PERSPECTIVES

Reliability validation
 Does measured system reliability meet its

specification?

 Is system reliability good enough to satisfy
users?

Safety validation
 Does system operate so that accidents do not

occur?

 Are accident consequences minimized?

Security validation
 Is system secure against external attack?

VALIDATION TECHNIQUES

Static techniques

 design reviews and program inspections

 mathematical arguments and proof

Dynamic techniques

 statistical testing

 scenario-based testing

 run-time checking

Process validation

 SE processes should minimize the chances of

introducing system defects

STATIC VALIDATION TECHNIQUES

Concerned with analysis of documentation

Focus is on finding system errors and

identifying potential problems that may arise

during system operation

Documents may be prepared to support

static validation

 structured arguments

 mathematical proofs

STATIC SAFETY VALIDATION

TECHNIQUES

 Demonstrating safety by testing is difficult

 Testing all possible operational situations is
impossible

 Normal reviews for correctness may be
supplemented by specific techniques intended to
make sure unsafe situations never arise

SAFETY REVIEWS

 Intended system functions correct?

 Is structure maintainable and

understandable?

Verify algorithm and data structure design

against specification

Check code consistency with algorithm and

data structure design

Review adequacy of system testing

HAZARD-DRIVEN ANALYSIS

Effective safety assurance relies on hazard

identification

Safety can be assured by

 hazard avoidance

 accident avoidance

 protection systems

Safety reviews should demonstrate that one

or more of these techniques have been

applied to all identified hazards

SYSTEM SAFETY CASE

The normal practice for a formal safety case
to be required for all safety-critical computer-
based systems

A safety case presents a list of arguments,
based on identified hazards, as to why there
is an acceptably low probability that these
hazards will not result in an accident

Arguments can be based on formal proof,
design rationale, safety proofs, and process
factors

POKA-YOKE DEVICES

 Mechanisms that lead to the prevention of a

potential quality problem before it occurs or to the

rapid detection of a quality problem if one is

introduced

 Are a simple, cheap, part of the engineering

process, and are located near the process task

where the mistakes are likely to occur

SQA PLAN – 1

Management section
 describes the place of SQA in the structure of the

organization

Documentation section
 describes each work product produced as part of

the software process

Standards, practices, and conventions section
 lists all applicable standards/practices applied

during the software process and any metrics to be
collected as part of the software engineering work

SQA PLAN - 2

 Reviews and audits section

 provides an overview of the approach used in the reviews

and audits to be conducted during the project

 Test section

 references the test plan and procedure document and

defines test record keeping requirements

SQA PLAN - 3

Problem reporting and corrective action

section

 defines procedures for reporting, tracking, and

resolving errors or defects, identifies organizational

responsibilities for these activities

Other

 tools, SQA methods, change control, record

keeping, training, and risk management

