SOFTWARE ENGINEERING

L ECTURE-38

.‘ Software Quality
® Assurance

Torics COVERED

Quality Concepts

Quality Cost

Total Quality Management
Software Reviews

QUALITY CONCEPTS - 1

Variation control is the heart of quality
control

Software engineers strive to control the
process applied
resources expended
end product quality attributes

Quality of design

refers to characteristics designers specify for the
end product to be constructed

QUALITY CONCEPTS - 2

Quality of conformance

degree to which design specifications are followed
In manufacturing the product

Quality control

series of inspections, reviews, and tests used to
ensure conformance of a work product to its
specifications

Quality assurance

auditing and reporting procedures used to provide
management with data needed to make proactive
decisions

guality planning, formal technical reviews, test
equipment, training

ral 0
QBRIASAEH § | | |
IN-process and inter-process inspection, equipment
calibration and maintenance, testing

Failure costs
rework, repair, failure mode analysis

External failure costs

complaint resolution, product return and replacement,
help line support, warranty work

TOTAL QUALITY MANAGEMENT - 1

Kaizen

develop a process that is visible, repeatable, and
measurable

Atarimae hinshitsu

examine the intangibles that affect the process and work
to optimize their impact on the process

TOTAL QUALITY MANAGEMENT - 2

Kanse

examine the way the product is used by the customer
with an eye to improving both the product and the
development process

Miryokuteki hinshitsu

observe product use in the market place to uncover new
product applications and identify new products to
develop

SOFTWARE QUALITY ASSURANCE

Conformance to software requirements Is
the foundation from which software quality is
measured.

Specified standards are used to define the
development criteria that are used to guide
the manner in which software iIs engineered.

Software must conform to implicit
requirements (ease of use, maintainability,
reliabllity, etc.) as well as its explicit
requirements.

SQA GROUP ACTIVITIES - 1

Prepare SQA plan for the project.

Participate in the development of the project's
software process description.

Review software engineering activities to verify
compliance with the defined software process.

SQA GROUP ACTIVITIES - 2

Audit designated software work products to

verify compliance with those defined as part
of the software process.

Ensure that any deviations in software or
work products are documented and handled
according to a documented procedure.

Record any evidence of noncompliance and
reports them to management.

SOFTWARE REVIEWS

Purpose is to find defects (errors) before
they are passed on to another software

engineering activity or released to the
customer.

Software engineers (and others) conduct
formal technical reviews (FTR) for software
engineers.

Using formal technical reviews
(walkthroughs or inspections) is an effective
means for improving software quality.

maintenance oracle
standards bearer

REV I(L:;g? rFﬁeCB)IE%Sf ntative

ers

FORMAL TECHNICAL REVIEWS - 1

Involves 3 to 5 people (including reviewers)

Advance preparation (no more than 2 hours
per person) required

Duration of review meeting should be less
than 2 hours

—ocus of review Is on a discrete work
oroduct

Review leader organizes the review meeting
at the producer's request.

FORMAL TECHNICAL REVIEWS - 2

Reviewers ask questions that enable the
producer to discover his or her own error
(the product is under review not the
producer)

Producer of the work product walks the
reviewers through the product

Recorder writes down any significant issues
raised during the review

Reviewers decide to accept or reject the
work product and whether to require
additional reviews of product or not.

WHY DO PEER REVIEWS?

To improve quality.
Catches 80% of all errors if done properly.
Catches both coding errors and design errors.

Enforce the spirit of any organization standards.
Training and insurance.

FORMALITY AND TIMING

Formal review presentations

resemble conference presentations.
Informal presentations

less detailed, but equally correct.
Early

tend to be informal

may not have enough information
Later

tend to be more formal
Feedback may come too late to avoid rework

FORMALITY AND TIMING

Analysis is complete.
Design is complete.
After first compilation.
After first test run.
After all test runs.

Any time you complete an activity that produce a
complete work product.

REVIEW GUIDELINES

Keep it short (< 30 minutes).

Don’t schedule two in a row.

Don’t review product fragments.

Use standards to avoid style disagreements.

Let the coordinator run the meeting and maintain
order.

FORMAL SQA APPROACHES

Proof of correctness.
Statistical quality assurance.
Cleanroom process combines items 1 & 2.

STATISTICAL QUALITY ASSURANCE

Information about software defects Is
collected and categorized

Each defect is traced back to its cause

Using the Pareto principle (80% of the
defects can be traced to 20% of the causes)
Isolate the "vital few" defect causes

Move to correct the problems that caused
the defects

SOFTWARE RELIABILITY

Defined as the probability of failure free
operation of a computer program in a
specified environment for a specified time
period

Can be measured directly and estimated

using historical and developmental data
(unlike many other software quality factors)

Software reliability problems can usually be
traced back to errors in design or
Implementation.

SOFTWARE RELIABILITY METRICS

Reliability metrics are units of measure for
system reliablility

System reliablility is measured by counting
the number of operational failures and
relating these to demands made on the
system at the time of failure

A long-term measurement program is
required to assess the reliability of critical
systems

RELIABILITY METRICS - PART 1

Probabillity of Failure on Demand (POFQOD)
POFOD =0.001

For one in every 1000 requests the service fails
per time unit

Rate of Fault Occurrence (ROCOF)
ROCOF =0.02

Two failures for each 100 operational time units
of operation

RELIABILITY METRICS - PART 2

Mean Time to Failure (MTTF)
average time between observed failures (aka MTBF)

Availability = MTBF / (MTBF+MTTR)

MTBF = Mean Time Between Fallure
MTTR = Mean Time to Repair

Reliability = MTBF / (1+MTBF)

TIME UNITS

Raw Execution Time
non-stop system

Calendar Time
If the system has regular usage patterns

Number of Transactions
demand type transaction systems

SOFTWARE SAFETY

SQA activity that focuses on identifying
potential hazards that may cause a software
system to fall.

Early identification of software hazards
allows developers to specify design features
to can eliminate or at least control the
Impact of potential hazards.

Software reliability involves determining the
likelihood that a failure will occur without
regard to consequences of failures.

VALIDATION PERSPECTIVES

Reliability validation

Does measured system reliability meet its
specification?

Is system reliability good enough to satisfy
users?

Safety validation

Does system operate so that accidents do not
occur?

Are accident consequences minimized?
Security validation
|s system secure against external attack?

VALIDATION TECHNIQUES

Static technigues
design reviews and program inspections
mathematical arguments and proof

Dynamic techniques
statistical testing
scenario-based testing
run-time checking

Process validation

SE processes should minimize the chances of
Introducing system defects

STATIC VALIDATION TECHNIQUES

Concerned with analysis of documentation

Focus is on finding system errors and
identifying potential problems that may arise
during system operation

Documents may be prepared to support
static validation

structured arguments
mathematical proofs

STATIC SAFETY VALIDATION
TECHNIQUES

Demonstrating safety by testing is difficult
Testing all possible operational situations is
Impossible

Normal reviews for correctness may be

supplemented by specific techniques intended to
make sure unsafe situations never arise

SAFETY REVIEWS

Intended system functions correct?

|s structure maintainable and
understandable?

Verify algorithm and data structure design
against specification

Check code consistency with algorithm and
data structure design

Review adequacy of system testing

HAZARD-DRIVEN ANALYSIS

Effective safety assurance relies on hazard
identification

Safety can be assured by
hazard avoidance
accident avoidance
protection systems

Safety reviews should demonstrate that one
or more of these techniques have been
applied to all identified hazards

SYSTEM SAFETY CASE

The normal practice for a formal safety case
to be required for all safety-critical computer-
based systems

A safety case presents a list of arguments,
based on identified hazards, as to why there
IS an acceptably low probability that these
hazards will not result in an accident

Arguments can be based on formal proof,
design rationale, safety proofs, and process
factors

POKA-YOKE DEVICES

Mechanisms that lead to the prevention of a
potential quality problem before it occurs or to the
rapid detection of a quality problem if one is
Introduced

Are a simple, cheap, part of the engineering

process, and are located near the process task
where the mistakes are likely to occur

SQAPLAN -1

Management section

describes the place of SQA in the structure of the
organization

Documentation section

describes each work product produced as part of
the software process

Standards, practices, and conventions section

lists all applicable standards/practices applied
during the software process and any metrics to be
collected as part of the software engineering work

SQA PLAN - 2

Reviews and audits section

provides an overview of the approach used in the reviews
and audits to be conducted during the project

Test section

references the test plan and procedure document and
defines test record keeping requirements

SQAPLAN -3

Problem reporting and corrective action
section

defines procedures for reporting, tracking, and
resolving errors or defects, identifies organizational
responsibilities for these activities

Other

tools, SQA methods, change control, record
keeping, training, and risk management

