
SOFTWARE ENGINEERING

 LECTURE-35

SOFTWARE TESTING AND QUALITY ASSURANCE

 TOPICS COVERED

Quality concepts

Software quality factors

Software reviews

The ISO 9001

3

READING ASSIGNMENT

 Roger S. Pressman, “Software Engineering: A

Practitioner’s Approach,” Fifth Edition, McGraw-Hill

Book Company Europe, 2001.

 Chapter 8: Software Quality Assurance

4

OBJECTIVES

 Learn what is software quality assurance (SQA).

 Learn the major quality factors.

 Understand how reviews are conducted.

5

SOFTWARE QUALITY ASSURANCE (SQA)
 SQA encompasses

(1) a quality management approach,

(2) effective software engineering technology (methods and tools),

(3) formal technical reviews that are applied throughout the software

process,

(4) a multi-tiered testing strategy,

(5) control of software documentation and the changes made to it,

(6) a procedure to ensure compliance with software development

standards (when applicable), and

(7) measurement and reporting mechanisms.

6

SOFTWARE QUALITY

 Software quality:

 Conformance to explicitly stated requirements

and standards

 Quality assurance:

 is the activity that leads to “fitness of purpose”.

 Quality product:

 is the one that does what the customer

expects it to do.
User satisfaction = compliant product + good quality + delivery

within budget and schedule

7

QUALITY CONCEPTS

Quality control: a series of inspections, reviews,

and tests to ensure a product meets the

requirements placed upon it.

 Includes a feedback loop to the process that created

the work product.

 Quality control activities may be fully automated,

entirely manual, or a combination of automated tools

and human interaction.

Quality assurance: analysis, auditing and

reporting activities.

 provide management with the data necessary to be

informed about product quality, 8

SOFTWARE QUALITY FACTORS

Functionality, Usability, Reliability, Performance, and
Supportability (FURPS) quality factors
 Functionality: feature set, capabilities, generality of

functions, and security

 Usability: human factors like consistency, and
documentation

 Reliability: frequency and severity of failures, accuracy of
outputs, mean time between failures, ability to recover,
predictability

 Performance: processing speed, response time, resource
consumption, throughput, and efficiency

 Supportability: extensibility, adaptability, maintainability,
testability, compatibility, configurability

9

WHY SQA ACTIVITIES PAY OFF?

10

cost to find

 and fix a defect

100

10

log

 scale

1

Req.
Design

code
test

system

test

field

 use

0.75 1.00
1.50

3.00

10.00

60.00-100.00

THE QUALITY MOVEMENT

 Total Quality Management (TQM) is a popular

approach for management practice.

 TQM stresses continuous process improvement

and can be applied to software development.

 Not much can be done to improve quality until a

visible, repeatable, and measurable process is

created.

11

TQM

1. Refers to a system of continuous process

improvement.

- develop a process that is visible, repeatable, and measurable.

2. This step examines intangibles that affect the process

and works to optimize their impact on the process.

3. This step concentrates on the user of the product.

Examining the way the user applies the product. This

step leads to improvement in the product itself and,

potentially, to the process that created it.

4. This is a business-oriented step that looks for

opportunity in related areas identified by observing the

use of the product in the marketplace.
12

SOFTWARE QUALITY ASSURANCE

 The SQA group must look at software from the

customer's perspective, as well as assessing its

technical merits.

 The activities performed by the SQA group involve

quality planning, oversight, record keeping,

analysis and reporting.

13

SOFTWARE QUALITY ASSURANCE (CONT.)

14

Formal
Technical
Reviews

SQA

Test
Planning
& Review

Measurement

Analysis
&

Reporting

Process
Definition &
Standards

SOFTWARE QUALITY ASSURANCE (CONT.)
 Beginning of the project

 Project manager will consider quality factors and decide which

ones are important for the system

 Decide on what validation and verification activities will be carried

out to check that the required quality factors are present in the

product

 During the project

 Validation and verification of quality standards and procedures

 End of the project

 Expected quality achieved to what extent

15

SOFTWARE REVIEWS
 Any work product (including documents) should be reviewed.

 Conducting timely reviews of all work products can often

eliminate 80% of the defects before any testing is conducted.

 This message often needs to be carried to managers in the

field, whose impatience to generate code sometimes makes

them reluctant to spend time on reviews.

16

WHAT ARE REVIEWS AND WHAT

REVIEWS ARE NOT?
 Reviews are:

 A meeting conducted by technical people for technical people

 A technical assessment of a work product created during the

software engineering process

 A software quality assurance mechanism

 Reviews are not:

 A project budget summary

 A scheduling assessment

 An overall progress report

17

FORMAL TECHNICAL REVIEWS (FTR)
 The objectives of FTR are:

 To uncover errors in functions, logic, or implementation for any

representation of the software.

 To verify that the software under review meets its requirements.

 To ensure that the software has been represented according to

predefined standards.

 To achieve software that is developed in a uniform manner.

 To make projects more manageable.

18

NOTES ON FORMAL TECHNICAL REVIEWS

 Review the product, not the producer

 Set an agenda and maintain it

 Take written notes

 Limit the number of participants and insist upon

advance preparation

 The duration of the review meeting should be less

than two hours.

 Develop a checklist for each product that is likely to

be reviewed

19

THE PLAYERS

20

review

 leader

producer

recorder reviewer

standards bearer (SQA)

Maintenance
Oracle

user rep

HOW AN FTR IS PERFORMED

Producer informs the project leader that the

product is complete and that a review is required

The project leader forms a review team and

appoints a review leader

The review leader evaluate the product for

readiness, generates copies of the product

material, distributes to the reviewers, and

schedules a review meeting

Each reviewer reviews the product. He becomes

familiar with the product and makes notes of

concerns 21

HOW AN FTR IS PERFORMED (CONT.)
Review leader, all reviewers, and producer

attend the meeting

One of the reviewers take the role of

recorder

During the meeting, the producer walks

through the product, explaining the material,

while the reviewers raise issue based on

their preparation. If an error is discovered,

then it is recorded by the recorder.

22

CONDUCTING THE REVIEW

23

Be prepared—evaluate product before the review

Review the product, not the producer

Keep your tone mild, ask questions

instead of making accusations

Stick to the review agenda

Raise issues, don't resolve them

Avoid discussions of style—stick to technical correctness

Schedule reviews as project tasks

Record and report all review results

1.

2.

3.

4.

5.

6.

7.

8.

OUTCOME OF AN FTR

The attendees of the meeting decide whether to:

 Accept the product without further modification

 Accept the product provisionally. Minor errors have been

encountered. These must be fixed but no additional

review will be needed

 Reject the product due to sever errors. Once the errors

are fixed, another review should be conducted

At the end of an FTR, a review summary report

should be produced. It should answer the following

 What was reviewed?

 Who was involved in the review?

 What were the findings and conclusions? 24

OUTCOME OF AN FTR (CONT.)

25

REVIEW CHECKLISTS
 FTR can be conducted during each step in the software

engineering process.

 Checklists can be used to assess products that are derived

as part of software development.

 The checklists are not intended to be comprehensive, but

rather to provide a point of departure for each review.

26

SOFTWARE PROJECT PLANNING
 Software project planning develops estimates for resources,

cost and schedule based on the software allocation

established as part of the system engineering activity.

 Like any estimation process, software project planning is

inherently risky.

 The review of the Software Project Plan establishes the

degree of risk.

27

SOFTWARE PROJECT PLANNING (CONT.)
 The following checklist is applicable:

 Is software scope unambiguously defined and

bounded?

 Is terminology clear?

 Are resources adequate for scope?

 Are resources readily available?

 Have risks in all important categories been

defined.

 Is a risk management plan in place?

 Are tasks properly defined and sequenced?
28

SOFTWARE PROJECT PLANNING (CONT.)
 Is parallelism reasonable given available

resources?

 Is the basis for cost estimation reasonable? Has
the cost estimate been developed using two
independent methods?

 Have historical productivity and quality data
been used?

 Have differences in estimates been reconciled?

 Are pre-established budgets and deadlines
realistic?

 Is the schedule consistent?

29

SOFTWARE REQUIREMENTS ANALYSIS

 Reviews for software requirements analysis focus

on traceability to system requirements and

consistency and correctness of the analysis model.

 A number of FTRs are conducted for the

requirements of a large system and may be also

followed by reviews and evaluation of prototypes as

well as customer meetings.

30

SOFTWARE REQUIREMENTS

ANALYSIS (CONT.)

 The following topics are considered during FTRs

for analysis:

 Is information domain analysis complete, consistent and

accurate?

 Is problem partitioning complete?

 Are external and internal interfaces properly defined?

 Does the data model properly reflect data objects, their

attributes and relationships.

 Are all requirements traceable to system level?

31

SOFTWARE REQUIREMENTS ANALYSIS

(CONT.)

 Has prototyping been conducted for the user/customer?

 Is performance achievable within the constraints

imposed by other system elements?

 Are requirements consistent with schedule, resources

and budget?

 Are validation criteria complete?

32

SOFTWARE DESIGN

Reviews for software design focus on data design,

architectural design and procedural design.

 In general, two types of design reviews are

conducted:

 The preliminary design review assesses the translation of

requirements to the design of data and architecture.

 The second review, often called a design walkthrough,

concentrates on the procedural correctness of algorithms

as they are implemented within program modules.

33

SOFTWARE DESIGN (CONT.)

The following checklists are useful for preliminary
design review:
 Are software requirements reflected in the software

architecture?

 Is effective modularity achieved? Are modules functionally
independent?

 Are interfaces defined for modules and external system
elements?

 Is the data structure consistent with information domain?

 Is data structure consistent with software requirements?

 Has maintainability been considered?

 Have quality factors been explicitly assessed?

34

SOFTWARE DESIGN (CONT.)

The following checklists are useful for Design

walkthrough:

 Does the algorithm accomplishes desired

function?

 Is the algorithm logically correct?

 Is the interface consistent with architectural

design?

 Is the logical complexity reasonable?

 Has error handling been specified?

 Are local data structures properly defined? 35

SOFTWARE DESIGN (CONT.)

 Are structured programming constructs

used throughout?

 Is design detail amenable to

implementation language?

 Which are used: operating system or

language dependent features?

 Has maintainability been considered?

36

CODING

 Errors can be introduced as the design is translated

into a programming language.

 A code walkthrough can be an effective means for

uncovering these translation errors.

37

CODING (CONT.)

The following checklist assumes that a design

walkthrough has been conducted and that algorithm

correctness has been established as part of the

design FTR.

 Has the design properly been translated into code? [The

results of the procedural design should be available

during this review.]

 Are there misspellings and typos?

 Has proper use of language conventions been made?

 Is there compliance with coding standards for language

style, comments, module prologue?

38

CODING (CONT.)

 Are there incorrect or ambiguous comments?

 Are data types and data declaration proper?

 Are physical constants correct?

 Have all items on the design walkthrough checklist been

re-applied (as required)?

39

SOFTWARE TESTING

 Software testing is a quality assurance activity in its

own right.

 The completeness and effectiveness of testing can

be dramatically improved by critically assessing

any test plans and procedures that have been

created.

40

TEST PLAN

The following checklists are useful for test plan

walkthrough:

 Have major test phases properly been identified and

sequenced?

 Has traceability to validation criteria/requirements been

established as part of software requirements analysis?

 Are major functions demonstrated early?

 Is the test plan consistent with overall project plan?

 Has a test schedule been explicitly defined?

 Are test resources and tools identified and available?

 Has a test record keeping mechanism been established?
41

TEST PROCEDURE

 The following checklists are useful for test procedure

walkthrough:

 Have both white and black box tests been specified?

 Have all independent logic paths been tested?

 Have test cases been identified and listed with expected results?

 Is error-handling to be tested?

 Have all boundary values been tested?

 Are timing and performance to be tested?

 Has acceptable variation from expected results been specified?

42

MAINTENANCE

 The review checklists for software development are equally

valid for the software maintenance phase. In addition to all of

the questions posed in the checklists, the following special

considerations should be kept in mind:

 Have side effects associated with change been considered?

 Has the request for change been documented, evaluated and

approved?

 Has the change, once made, been documented and reported to

interested parties?

 Have appropriate FTRs been conducted?

 Has a final acceptance review been conducted to ensure that all

software has been properly updated, tested and replaced?

43

STATISTICAL QUALITY ASSURANCE

 Each defect needs to be traced to its cause.

 Defect causes having the greatest impact on the

success of the project must be addressed first.

44

STATISTICAL SQA

45

Product

& Process

measurement

... an understanding of how
to improve quality ...

• collect information on all
defects
 • find the causes of the
defects
 • move to provide fixes for

the process

METRICS DERIVED FROM REVIEWS

 Inspection time per page of documentation

 Inspection time per KLOC or FP

 Inspection effort per KLOC or FP

 Errors uncovered per reviewer hour

 Errors uncovered per preparation hour

 Errors uncovered per SE task (e.g., design)

Number of minor errors (e.g., typos)

Number of major errors (e.g., nonconformance to

requirements)

Number of errors found during preparation
46

SOFTWARE RELIABILITY

 Software consistency: repeatability of results.

 Reliability: probability of failure free operation for a

specified time period.

 Don’t apply hardware reliability theory to software (e.g. a key

point is that, unlike hardware, software does not wear out so

that failures are likely to be caused by design defects).

47

IEEE STANDARD: SOFTWARE

QUALITY ASSURANCE PLAN

48

THE ISO 9001 QUALITY STANDARDS

 One of the most important worldwide standards for

quality assurance

 Adopted for use by over 130 countries

 Not industry specific but expressed in general

terms

 ISO 9001 is the quality assurance standard that

contains 20 requirements that must be present in

any software quality assurance system.

49

THE ISO 9001: HOW IT WORKS?
 A software developer implements a quality system

according to ISO 9001 specifications

 The quality system is used for some time to detect any

problems in the system

 Third party audit

 Accreditation request to the responsible body

 Accreditation body inspect the quality system

documentation and visits the organization

On successful inspection, a certificate is issued

Unannounced visits to check whether the quality system

is adhered to or not
50

KEY POINTS
Quality assurance: is the activity that leads to “fitness of

purpose”

Major software quality factors: functionality, usability,
reliability, performance, and supportability.

Any work product (including documents) should be
reviewed.

 FTR are to find errors during the process so that they
don’t become defects after the release of the software.

Checklists can be used to assess products that are
derived as part of software development.

 ISO 9001 is the quality assurance standard that
contains 20 requirements that must be present in any
software quality assurance system. 51

