
SOFTWARE ENGINEERING

LECTURE-33

 Software Testing

TOPICS COVERED

 Testing Strategy

 Testing Equivalence Class

 Unit Testing

 Equivalence Testing

 System Testing

SYSTEM/SOFTWARE TESTING

 Error detection and removal

 determine level of reliability

 well-planned procedure - Test Cases

 done by independent quality assurance group

 (except for unit testing)

TEST STRATEGY

 UNIT TESTING (Module testing)
 debuggers, tracers

 programmers

 INTEGRATION TESTING
 communication between modules

 start with one module, then add incrementally

 SYSTEM TESTING

 manual procedures, restart and recovery, user interface

 real data is used

 users involved

 ACCEPTANCE TESTING

 user-prepared test data

 Verification Testing, Validation testing, Audit Testing

 White Box Testing

 knowing internal working ,and exercising different parts

 test various paths through software; if exhaustive testing is

impossible, test high-risk paths

 Black Box Testing

 knowing functions to be performed and testing whether

these are performed properly

 correct outputs from inputs

 DBs accessed/updated properly

 test cases designed from user requirements

 appropriate at Integration, Systems and Acceptance testing

levels

TESTING EQUIVALENCE CASES

 Two inputs are in the same Equivalence Class if they are
handled similarly by system
 eg. data field valid value in 1-50

 So, 20, 38, 1, 47 belong to the same Equivalence Class

 no need to test multiple values from same Equivalent Class

 Bounds testing
 eg. test 38, then end points 1 and 50

 test valid and invalid equivalence classes

 reduces the number of test cases required

Example: 3 inputs

 I1 has 10 equivalence classes Total tests cases required:

 I2 has 10 equivalence classes 10 x 10 x 10 = 1000 test
cases.

 I3 has 10 equivalence classes

DEPENDENCY ISLANDS
 Each output is usually not dependent on all inputs

 Example: suppose we have 6 inputs I1,.. I6 and 3 outputs O1, .., O3

Suppose O1 depends on I1, I2, I3

 O2 depends on I4, I5

 O3 depends on I6

 If each input has 5 equivalence classes:

 To test I1 we need 5 test cases

 To test I2 we need 5 test cases

 To test I1 and I2 together, we need 5 x 5 test cases

 Thus for all 67 inputs, we need 56 = 15,625 test cases

 Using dependency islands:

 For O1: test only I1, I2, I3 : 5
3 test cases

 For O2: test only I4, I5 : 5
2 test cases Total test cases =

155

 For O3: test only I6 : 5
 test cases

STUB TESTING (STUBS AND DRIVERS)
 -

Unit and Integration testing

A

Top-Down Integration Testing

b c d Stubs

Stubs: dummy modules used

for testing if higher level

modules are working properly.

A

B C D

Stubs e f g A

B C D

E F G

A

B C D

E F G

Bottom-Up Integration testing

a

B C D

E F G

Driver: dummy modules used

for issuing calls to lower modules

and testing if the lower modules are

working properly.

Driver

b

E F

Driver c

G

Driver a

D

Driver

 Cost of developing stubs and drivers

 generally, Driver modules are easier to develop -- so,

bottom-up integration testing is less costly.

 With Top-Down Integration Testing, major modules are

coded and tested first - strong psychological boost when

major modules are done.

 With Bottom-Up Integration testing, no working program

can be demonstrated until the last module is tested --

major design errors may not be detected till the end, when

entire programs may need revision!

 Meet-in-the-middle approach may be best.

SYSTEM TESTING

 Recovery Testing

 forces software failure and verifies complete recovery

 Security Testing

 verify proper controls have been designed

 Stress Testing

 resource demands (frequency, volume, etc.)

ACCEPTANCE TESTING

 Alpha Testing (Verification testing)

 real world operating environment

 simulated data, in a lab setting

 systems professionals present

 observers, record errors, usage problems, etc.

 Beta Testing (Validation Testing)

 live environment, using real data

 no systems professional present

 performance (throughput, response-time)

 peak workload performance, human factors test, methods and

procedures, backup and recovery - audit test

