SOFTWARE ENGINEERING

LECTURE-33

Software Testing

Testing Strategy

Testing Equivalence Class
Unit Testing

Equivalence Testing
System Testing

Error detection and removal
determine level of reliability
well-planned procedure - Test Cases

done by independent gquality assurance group
(except for unit testing)

UNIT TESTING (Module testing)
debuggers, tracers
programmers

INTEGRATION TESTING
communication between modules
start with one module, then add incrementally

SYSTEM TESTING
manual procedures, restart and recovery, user interface

real data is used
users involved

ACCEPTANCE TESTING

user-prepared test data
Verification Testing, Validation testing, Audit Testing

White Box Testing

knowing internal working ,and exercising different parts
test various paths through software; if exhaustive testing is
Impossible, test high-risk paths

Black Box Testing

knowing functions to be performed and testing whether
these are performed properly

correct outputs from inputs
DBs accessed/updated properly

test cases designed from user requirements

appropriate at Integration, Systems and Acceptance testing
levels

Two inputs are in the same Equivalence Class if they are
handled similarly by system

eg. data field valid value in 1-50
So, 20, 38, 1, 47 belong to the same Equivalence Class
no need to test multiple values from same Equivalent Class

Bounds testing
= eg. test 38, then end points 1 and 50

test valid and invalid equivalence classes
reduces the number of test cases required

Example: 3 inputs

|, has 10 equivalence classes Total tests cases required:
|, has 10 equivalence classes 10 x 10 x 10 = 1000 test
cases.

|, has 10 equivalence classes

Each output is usually not dependent on all inputs

Example: suppose we have 6 inputs |4,.. lg and 3 outputs O4, .., O,

Suppose O, dependson |y I, I,
O, depends on |, I5

O, depends on Ig

If each input has 5 equivalence classes:
To test I, we need 5 test cases

To test |, we need 5 test cases
To test I, and |, together, we need 5 x 5 test cases
Thus for all 67 inputs, we need 5° = 15,625 test cases

Using dependency islands:

For O4: testonly Iy, I, I; : 53test cases

For O,: testonly I,,1; :5%testcases Total test cases =
155

For O5: test only I, : 5test cases

STUB TESTING (STUBS AND DRIVERS)

Unit and Integration testing
Top-Down Integration Testing Stubs: dummy modules used

A for testing if higher level

m modules are working properly.
b C d | Stubs

Stubs A

Bottom-Up Integration testing

oy

a |Driver

At

gt

Driver: dummy modules used
for issuing calls to lower modules
and testing if the lower modules are

working properly.

¢ | Driver a | Driver

B
E F

b | Driver
E F

S B

Cost of developing stubs and drivers

generally, Driver modules are easier to develop -- so,
bottom-up integration testing is less costly.

With Top-Down Integration Testing, major modules are
coded and tested first - strong psychological boost when
major modules are done.

With Bottom-Up Integration testing, no working program
can be demonstrated until the last module is tested --
major design errors may not be detected till the end, when
entire programs may need revision!

Meet-in-the-middle approach may be best.

Recovery Testing
forces software failure and verifies complete recovery

Security Testing
verify proper controls have been designed

Stress Testing
resource demands (frequency, volume, etc.)

Alpha Testing (Verification testing)

real world operating environment

simulated data, in a lab setting

systems professionals present

« observers, record errors, usage problems, etc.

Beta Testing (Validation Testing)

live environment, using real data

no systems professional present

performance (throughput, response-time)

peak workload performance, human factors test, methods and
procedures, backup and recovery - audit test

