
SOFTWARE ENGINEERING

LECTURE-33

 Software Testing

TOPICS COVERED

 Testing Strategy

 Testing Equivalence Class

 Unit Testing

 Equivalence Testing

 System Testing

SYSTEM/SOFTWARE TESTING

 Error detection and removal

 determine level of reliability

 well-planned procedure - Test Cases

 done by independent quality assurance group

 (except for unit testing)

TEST STRATEGY

 UNIT TESTING (Module testing)
 debuggers, tracers

 programmers

 INTEGRATION TESTING
 communication between modules

 start with one module, then add incrementally

 SYSTEM TESTING

 manual procedures, restart and recovery, user interface

 real data is used

 users involved

 ACCEPTANCE TESTING

 user-prepared test data

 Verification Testing, Validation testing, Audit Testing

 White Box Testing

 knowing internal working ,and exercising different parts

 test various paths through software; if exhaustive testing is

impossible, test high-risk paths

 Black Box Testing

 knowing functions to be performed and testing whether

these are performed properly

 correct outputs from inputs

 DBs accessed/updated properly

 test cases designed from user requirements

 appropriate at Integration, Systems and Acceptance testing

levels

TESTING EQUIVALENCE CASES

 Two inputs are in the same Equivalence Class if they are
handled similarly by system
 eg. data field valid value in 1-50

 So, 20, 38, 1, 47 belong to the same Equivalence Class

 no need to test multiple values from same Equivalent Class

 Bounds testing
 eg. test 38, then end points 1 and 50

 test valid and invalid equivalence classes

 reduces the number of test cases required

Example: 3 inputs

 I1 has 10 equivalence classes Total tests cases required:

 I2 has 10 equivalence classes 10 x 10 x 10 = 1000 test
cases.

 I3 has 10 equivalence classes

DEPENDENCY ISLANDS
 Each output is usually not dependent on all inputs

 Example: suppose we have 6 inputs I1,.. I6 and 3 outputs O1, .., O3

Suppose O1 depends on I1, I2, I3

 O2 depends on I4, I5

 O3 depends on I6

 If each input has 5 equivalence classes:

 To test I1 we need 5 test cases

 To test I2 we need 5 test cases

 To test I1 and I2 together, we need 5 x 5 test cases

 Thus for all 67 inputs, we need 56 = 15,625 test cases

 Using dependency islands:

 For O1: test only I1, I2, I3 : 5
3 test cases

 For O2: test only I4, I5 : 5
2 test cases Total test cases =

155

 For O3: test only I6 : 5
 test cases

STUB TESTING (STUBS AND DRIVERS)
 -

Unit and Integration testing

A

Top-Down Integration Testing

b c d Stubs

Stubs: dummy modules used

for testing if higher level

modules are working properly.

A

B C D

Stubs e f g A

B C D

E F G

A

B C D

E F G

Bottom-Up Integration testing

a

B C D

E F G

Driver: dummy modules used

for issuing calls to lower modules

and testing if the lower modules are

working properly.

Driver

b

E F

Driver c

G

Driver a

D

Driver

 Cost of developing stubs and drivers

 generally, Driver modules are easier to develop -- so,

bottom-up integration testing is less costly.

 With Top-Down Integration Testing, major modules are

coded and tested first - strong psychological boost when

major modules are done.

 With Bottom-Up Integration testing, no working program

can be demonstrated until the last module is tested --

major design errors may not be detected till the end, when

entire programs may need revision!

 Meet-in-the-middle approach may be best.

SYSTEM TESTING

 Recovery Testing

 forces software failure and verifies complete recovery

 Security Testing

 verify proper controls have been designed

 Stress Testing

 resource demands (frequency, volume, etc.)

ACCEPTANCE TESTING

 Alpha Testing (Verification testing)

 real world operating environment

 simulated data, in a lab setting

 systems professionals present

 observers, record errors, usage problems, etc.

 Beta Testing (Validation Testing)

 live environment, using real data

 no systems professional present

 performance (throughput, response-time)

 peak workload performance, human factors test, methods and

procedures, backup and recovery - audit test

